EFORWOOD Tools for Sustainability Impact Assessment

Collection and aggregation of single chain data from WP 3.1-WP 3.4 in order to derive ToSIA inputs in commonly agreed units and formats and deliver those to M1

Diana Vötter, Staffan Berg, Lars Wilhelmson, Volker Bölle and Arnaud Villette

EFI Technical Report 78, 2011

Collection and aggregation of single chain data from WP 3.1-WP 3.4 in order to derive ToSIA inputs in commonly agreed units and formats and deliver those to M1

Diana Vötter, Staffan Berg, Lars Wilhelmson, Volker Bölle and Arnaud Villette

Publisher: European Forest Institute Torikatu 34, FI-80100 Joensuu, Finland Email: publications@efi.int http://www.efi.int

Editor-in-Chief: Risto Päivinen

Disclaimer: The views expressed are those of the author(s) and do not necessarily represent those of the European Forest Institute or the European Commission. This report is a deliverable from the EU FP6 Integrated Project EFORWOOD – Tools for Sustainability Impact Assessment of the Forestry-Wood Chain.

Preface

This report is a deliverable from the EU FP6 Integrated Project EFORWOOD – Tools for Sustainability Impact Assessment of the Forestry-Wood Chain. The main objective of EFORWOOD was to develop a tool for Sustainability Impact Assessment (SIA) of Forestry-Wood Chains (FWC) at various scales of geographic area and time perspective. A FWC is determined by economic, ecological, technical, political and social factors, and consists of a number of interconnected processes, from forest regeneration to the end-of-life scenarios of wood-based products. EFORWOOD produced, as an output, a tool, which allows for analysis of sustainability impacts of existing and future FWCs.

The European Forest Institute (EFI) kindly offered the EFORWOOD project consortium to publish relevant deliverables from the project in EFI Technical Reports. The reports published here are project deliverables/results produced over time during the fifty-two months (2005–2010) project period. The reports have not always been subject to a thorough review process and many of them are in the process of, or will be reworked into journal articles, etc. for publication elsewhere. Some of them are just published as a "front-page", the reason being that they might contain restricted information. In case you are interested in one of these reports you may contact the corresponding organisation highlighted on the cover page.

Uppsala in November 2010

Kaj Rosén EFORWOOD coordinator The Forestry Research Institute of Sweden (Skogforsk) Uppsala Science Park SE-751 83 Uppsala E-mail: firstname.lastname@skogforsk.se

Project no. 518128

EFORWOOD

Tools for Sustainability Impact Assessment

Instrument: IP

Thematic Priority: 6.3 Global Change and Ecosystems

Deliverable PD3.4.2

Collection and aggregation of single chain data from WP 3.1-WP 3.4 in order to derive ToSIA inputs in commonly agreed units and formats and deliver those to M1

Due date of deliverable: Month 18 Actual submission date: Month 24

Start date of project: 011105 Duration: 4 years

Organisation name of lead contractor for this deliverable: ALUFR (WP3.4)

Final version

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)				
Dissemination Level				
PU	Public			
PP	Restricted to other programme participants (including the Commission Services)	Х		
RE	Restricted to a group specified by the consortium (including the Commission Services)			

Project Deliverable PD3.4.2

Collection and aggregation of test chain data from WP 3.1-WP 3.4, in order to derive ToSIA inputs in commonly agreed units and formats and deliver those to M1

Authors:

Diana Vötter (ALUFR), Staffan Berg (Skogforsk), Lars Wilhelmson (Skogforsk), Volker Bölle (FVA), Arnaud Villette (AFOCEL), Date: 20th August 2007 (first draft)

Summary/Purpose of the report:

This deliverable is meant to give an overview as well as be a means of look-up list, on used assumptions, calculation modes, used models and delivered data for a restricted set of indicators for the test chains within the EFORWOOD project.

This document is entirely only about the TEST CHAINS and data we delivered for them. The case studies and with them the single embedded chains will come later, namely in Month 27, Jan 2008.

Table of contents:

1. Introduction

- 1.1. Use and importance of indicators in EFORWOOD
- 1.2. Used set of indicators
- 1.3. Status quo, difference test chain single chain

2. Main part – data material

- 2.1. Pine test chain
- 2.1.1. set up of test chain
- 2.1.2. models for calculation,
- 2.1.3 calculation modes
- 2.1.4 assumptions
- 2.1.5 data delivered to M1
- 3. Spruce test chain
 - 3.1. Set up of test chain
 - 3.2. models for calculation,
 - 3.3. calculation modes
 - 3.4. assumptions
 - 3.5. data delivered to M
- 4. Eucalypt test chain
 - 4.1. Set up of test chain
 - 4.2. models for calculation,
 - 4.3. calculation modes
 - 4.4. assumptions
 - 4.5. data delivered to M1
- 5. Perspective/further work
- 6. Literature

1 Introduction

1.1 Use and importance of indicators in EFORWOOD

The aim and output of EFORWOOD and its tool ToSIA is described on the webpage as: "The aim of the project is to provide methodologies and tools that will, for the first time, integrate Sustainability Impact Assessment of the whole European Forestry-Wood Chain (FWC), by quantifying performance of FWC, using indicators for all three pillars of sustainability; environmental, economic and societal. "

For the assessment of the European Forest-Wood Chain (FWC) it is of prime interest to have a holistic approach on selecting criteria and indicators in the context of EFORWOOD Module 3 ("Forest to Industry Interactions"). For this reason EFORWOOD concentrates on the three pillars of sustainability, integrating the multiple benefits of forest resources at an economic, social and environmental level (KIRKPATRICK and GEORGE, 2005).

Thus the first step for a sustainability impact assessment is the collection and calculation of adequate criteria and indicators. Criteria and indicators have been developed to describe and help monitor progress in achieving sustainable forest management through several international, regional and national commissions and fora. Therefore they were applied at several Ministerial Conferences on the Protection of Forests in Europe (MCPFE 2002), such as in Strasbourg 1990, Helsinki 1993, Lisbon 1998, Vienna 2003 and the upcoming conference in Warsaw 2007. Also the European Union has adopted sustainable development indicators in 2005 (compare EUROPEAN COMMISSION 2005).

In ToSIA, only the term "indicator(s)" is used and those indicators can, according to TRASOBARES et al (2007) "in a generic sense (...) be viewed as factors or variables that can be used to measure the status and change of a system or process. Indicators permit operationalising the concept of sustainability. The use of indicators allows for deconstructing of the sustainability assessment problem into manageable bits that can lend themselves to more formal or structured analysis (MENDOZA and PRABHU, 2002). Indicators for SIA can be quantitative (\in , tons of C, person hours) or qualitative. Qualitative indicators can be converted to ordinal scale (e.g., the naturalness of a forest stand can be classified as 1=natural, 2=semi-natural, 3=planted)" (compare EFORWOOD DELIVERABLE D1.4.3).

1.2 Used set of indicators

Indicators, which will be used for the calculation in ToSIA, have been collected in an iterative approach, resulting in several Draft sets of indicators. Currently EFORWOOD Indicator Draft Set 5 and the related module-specific indicators are in repeated discussion.

As the data collection for the test chain had already started earlier on, and as this data collection was designed first of all as a learning exercise, only a reduced set of 12 indicators was identified. That was the 4th Draft set of indicators, and thereof from the set of Lead indicators some were selected by Marcus Lindner, M1, and called "ToSIA Lead indicators".

Those were the following:

Number	Indicator with its subclasses
(1)	LI 1 Gross Value Added
(2)	LI 2a Production cost of process inputs from the FWC

	LI 2b Other production costs
(4)	LI 4a Resources and material use (wood material)
	LI 4b Resources and material use (non-wood material)
	LI 4c Resources and material use (recovered raw material)
(10)	LI 10a Employment male
	LI 10b Employment female
	LI 10c Employment rural
	LI 10d Employment urban
(11)	LI 11a Wages and salaries male
	LI 11b Wages and salaries female
(12)	LI 12a Occupational accidents (non-fatal)
	LI 12b Occupational accidents (fatal)
	LI 12c Occupational diseases
(13)	LI 13a Education time per person-year working time in the process
. ,	LI 13b Education expenditure per person-year working time in the process
(15)	LI 15a Energy generation (from process inputs)
	LI 15b Energy generation (from other wood biomass)
	LI 15c Energy generation (renewable)
	LI 15d Energy generation (non-renewable)
	LI 15e Energy use/ share self-sufficiency
(16)	LI 16b Carbon sequestration in woody living biomass (above and
	belowground)
	LI 16c Carbon sequestration in woody dead biomass (standing and lying),
	RESIDUES
	LI 16d Carbon sequestration in forest soils
	LI 16e Carbon sequestration in harvested wood products
	LI 16a Total greenhouse gas emissions per process
(17)	LI 17a Transport distance road transport
	LI 17b Transport distance rail transport
	LI 17c Transport distance water transport (inland waterways and sea)
	LI 17d Transport distance air transport
	LI 17e Freight volume road transport
	LI 17f Freight volume rail transport
	LI 17g Freight volume water transport (inland waterways and sea)
	LI 17h Freight volume air transport
(18)	LI 18a Water use in total
	LI 18b Water pollution with organic substances
	LI 18c Water pollution with nutrients
	LI 18d Water pollution with hazardous substances

Figure 1 explains which part of which version had been used for data collection on test chain level. Data presented in this deliverable only refer to this set, as only test chain data is described in this deliverable.

Draft set 1 (February 2006)

Module specific indicators (have not been included) All indicators further defined by 5 indicator groups

Draft set 5 (November 2006)

Fig 1:

At the IP Board (11) during the EFORWOOD autumn week 2006 in Lisbon, Portugal on November 14-15, 2006, it had been agreed to use the 5th set of General indicators for the embedded single chains, case studies and the European study, comprising the following indicators:

newly proposed

Economic indicators	8	Indicator No: 1 to 8
Social indicators	4	Indicator No: 9 to 12

Environmental indicators	10	Indicator No: 13 to 22
plus:		
Qualitative indicators	6	Indicator No: 23 to 28
Under consideration	1	Indicator No: 29
Newly proposed	2	Indicator No: 31 to 32
In sum:	31	

From the 5th Set of indicators onwards, there is no more distinction made between Lead+ and General indicators; only between General indicators, which are calculated for the whole chain, and module-specific indicators, which are calculated at module level.

Furthermore, it had been agreed that a set of module-specific indicators shall be collected module-wise until the end of January 2007. Those and their integration shall be discussed during the next EFORWOOD spring week 2007 in Zvolen, Slovakia.

Result of the test chain data collection exercise however, was the formation of indicator expert groups for environmental, socio-economic, transport, energy and waste indicators. These groups have been working on definitions, calculation methods and system boundaries of each indicator of the IP Board approved set 5 of General indicators. Those results have also been presented, discussed and agreed upon during the following EFORWOOD spring week 2007 in Zvolen, Slovakia.

1.3 Status quo, difference test chain – single chain

In the first planning phase of the project, the development of the modelling of the Forest Wood Chain was supposed to be carried out in three steps:

- 1. at test chain level; for the
 - a. Pine chain
 - b. Spruce chain
 - c. Eucalypt chain
- 2. at case study level; for the
 - a. Scandinavian (Production) Case
 - b. Baden-Württemberg (Regional) Case
 - c. Iberian (Consumption) Case
- 3. at European study level

During the first year of EFORWOOD and the work on test chain data collection the decision was taken that the test chains should in a second step be developed further into so-called "embedded single chains" (Single Chains, in short). Those single chains will serve two purposes:

- a) They will be embedded into the case study, making up one strand of possible alternative chains or strands within the case study.
- b) They will be calculated with the entire set of General indicators and module-specific indicators.

This document, however, concentrates on data collection and aggregation within Module M3, namely the work packages WP 3.1 to 3.4 for the Test Chains. Furthermore, inputs in commonly agreed units and formats will be provided as they have been delivered to M1.

2 Main part – data material

2.1 Pine test chain

2.1.1 Set up of test chain

The work on single chains is a simplified approach for later stages. For this reason only one stand with two alternatives was modelled for M2 ("Forest Resources Management") output product. These stands were treated with regeneration measures, pre-commercial thinning, one thinning and one final harvesting. The characteristics of the stands were pragmatically chosen as a representative condition for forest operations in Västerbotten (NUTS SE081) on Pine stands, predominantly situated in the coast land.

	Stocking [stems/ha]	Cutting [stems/ha]	volume	Cut volume	DBH [cm]	Stem volume [m ³ sub]
Pre commercial	1500	1000	3 m ³ ob	1 m ³ ob		L J
thinning**						
Thinning	900*	320	130* m ³ sub	55 m³sub	15,9	0,17
Final harvesting	500	500	180 m ³ sub	180 m ³ sub	21,2	0,36

Tab 1 Basic stand characteristics for stand harvested in Single FWC Scandinavian Pine chain

*Staffan Berg's calculation

**E-mail from Tomas Lämås 18 June 2007. Standing volume with branches (Marklund, 1988) 3,75 m³ob of which 1,25 left on ground.

The operation consists of the felling of undesired trees. They are left on the ground. 3,75 m3 ob; 2,81 m3 sub biomass/ha. 1,25 thinned and left at site. The conversion factor is referred to m³sub with branches with the anticipation that bark content is 25% (PS 1994 page 260). Carbon content per cubic metre wood and bark alike is assumed to be 0,215 to C/ m³ob

Fig 2: M3 part of the Pine test chain with input from M2 and output to M4.

The chain of operations is described in Figure 2. Pre-commercial thinning of planted pine stand in young phase, (Process ID 1000027), is done with the motor manual brush saw. The small trees cut (The harvest residues) are left on ground in order to maintain the productivity of the stand (Table 1 and 3).

Thinning (Process ID number 1000003) and forwarding (Process ID number 1000046) was calculated as a fully mechanized approach, creating sawlogs and pulpwood for delivery to industry (M4 – "Processing and Manufacturing"), whereas harvest residues were left as biomass (21%) on the ground and not further followed during subsequent processes.

The thinning gave 22% sawlogs and 78% pulpwood of the industrial wood.

Final harvest of the mature pine stand is also performed by completely mechanized procedures, similar in design as thinning, Process ID 100003 and 1000058 for final felling and forwarding respectively. The final felling gave 58% sawlogs and 42% pulpwood. Branches and tops (23%) were left on site.

In the Scandinavian Pine chain from both thinnings and final fellings only sawlogs were followed as a product to industry (saw mill and pulp mill). The timber is transported by road vehicles. The average distance for transport of saw logs were 93 km and this is described by Process ID 1000101 and 1000103, transport by road vehicles after thinnings and final felling respectively.

The sawlogs are loaded at road side after forwarding and unloaded at the sawmill. The same performance is anticipated for driving, loading and unloading of logs after thinning for timber.

	Product	Tons/year delivered
	ID	at millgate
Saw timber inclusive	2021100	4102523
fuelwood final felling		
Saw timber thinning	2041100	575555
Pulp wood inclusive	2021101	2970792
fuelwood final felling		
Pulp wood thinning	2041101	2040603

Tab 2 Raw material delivered Single FWC Scandinavian Pine chain

The measuring of sawlogs at industry is done by one person who operates at the timber reception at the saw mill and its operation, except manpower cost, 0,29 Euro/m³sub, is paid by the mill and will so be covered by M4.

2.1.2 Models for calculation

The modelling for calculation of machine costs and the way of describing forest operations is described in Eforwood deliverable "D3.2.3. SI-data for harvesting operations based on 3.2.1 and 3.2.2". The cost calculation is made according to the excel-based routine "Cost calculations.xlc" (Eriksson & Berg, 2007). Time functions for harvesters and forwarders are according to Brunberg (1995, 1997 and 1998).

AFOCEL set the basis for transport process calculations, using the excel-based file "Transport-cost-Paris.xls", as well as the model "Procou" (PD3.3.2).

The excel-based model "Transport-cost-Paris_Martins svar 061004.xls" was developed based on PD 3.3.2 by Afocel/Skogforsk; the cost estimates for road hauling is calculated. The result is presented in Table 3. The industrial wood is delivered at industry, Table 6.

The conversion factors (tab 7 and tab 8) have been calculated in two steps.

Table 7 originates from a preliminary bucking simulation using Skogforsk-TimAn (Ogemark & Arlinger, 2003) by a standard price list (reflecting the common price relations between different kinds of sawlogs and pulpwood) of trees from sample plots growing in the coastland of Västerbotten and Norrbotten (1996-2000). Measured (diameter (bh) height and age) by the National Forest Inventory of Sweden (SLU). The bark thickness was estimated by functions (Hannrup, 2004) while fresh weights and carbon contents were calculated by mean values from national forest statistics.

Table 7b show the results from the second step. In this case a selection of plots from the National Forest Inventory (2001-2005) reflecting different kind of stands (mature for final cut or thinning) growing in the county of Västerbotten (Valinger et al. 2007) were used as a basis for the bucking simulation. In this case the bucking simulation was performed as described above but in addition further analysed by the tool Skogforsk-Pri-analyses (examples of first Eforwood analyses are given in Wilhelmsson et al. 2006). In this analysis the fresh weights were predicted by models (Wilhelmsson & Moberg, 2004) requiring an input of the number of annual rings in cross-sections of log ends provided by a model (Wilhelmsson, 2006). These predictions have been made to improve the property values of different assortments and growth conditions of the actual trees. Finally the carbon contents were predicted by a tentative model (Wilhelmsson,

unpubliced), based on findings by Lamlom & Savidge (2003) and predictions of basic density (Wilhelmsson et al. 2002).

2.1.3 Calculation modes

Entity	value	ref
Person hours/ha	9,4	Skogforsk data bank
Person hours/ha, male	8,5	SSY 2005, Tables 7,7; 12,3 and 12,5
Person hours/ha. female	0,9	SSY 2005, Tables 7,7; 12,3 and 12,5.
Person hours/ha, urban*	7,7	SSY 2005 tables 7.7 and SYS Table 03
Person hours/ha. rural	1,7	SSY 2005 tables 7.7 and SYS Table 03.
Labour cost/ personhour	19,50	Cost calculation. xlc
Energy cost/ha	18,3	Skogforsk model
Total cost /ha	217	Skogforsk model

Operations in Single FWC Scandinavian Pine chain

Tab 3 Characteristics of pre commercial thinning in Single FWC Scandinavian Pine chain

*Urban population is people outside populated centres**

** At least 200 inhabitants and distance between houses less than 200 m

Investment, Euro	2 000
Depreciation, years	4
Interest rate %	4.0
End value. Euro	0
Repayment factor	0.275
Investment, Euro/year	551
Staff salary, Euro/hour	11,2
Social costs and taxes, %	40,00
,	,
Working days / year	210
Working hours / shift	8
Overtime, Euro/h	20,0
No. Shifts/day	1
E0/E15	0,75
Travel to Work, km/day	50
Travel to Work, Euro/km	0,3
No. of moves (sites) / year	19
Standstill per move, hours	3
Working hours/year	1 680
E15-h/year	1 203
Travel to work, km/year	21 000
Staff costs	
Salaries Euro/year	18 766
Travel to work, Euro/year	6 479
Social costs and taxes/year	7 506
Per day allowance, euro/year	0
Sum	32 751
Operating costs	

Diesel, Euro/l	1
Oils, Euro/l	3
Diesel consumption, l/E15-h	2
Oils consumption, l/E15-h	0,2
Repair & maintenance, euro/E15-h	1
Fuel costs, Euro/year	2 406
Oils, Euro/year	722
Repair & maintenance, Euro/year	602

Tab 4 Some input for pre-commercial thinning in Single FWC Scandinavian Pine chain according to Cost calculation.xls

FFH= Final felling Harvesting; FFFW=Final felling Forwarding; TH=Thinning Harvesting; TFW =Thinning forwarding

		FFH	FFFW	TH	TFW	References and equivalent
Investment 1000 €	€	330	309	330	255	Skogforsk expertise
Depreciation	years	4	7	4	7	1 year for motormanual equipment, 4 years for harvester, 7 years for forwarders and skidders
Interest rate	0⁄0	4	4	4	4	4% based on Euro market 6 months bonds 2001 - 2006 + 1,9%
End value	€	49,5	123,4	49,5	102	
Administrative costs, insurance and miscellaneous	€/РМН	6,51	5,87	6,53	5,91	allocated per PMH. According to cost models, se ref.
Social costs and taxes Taxes machine	year	25879	25879	25879	25879	for labour, According to cost models, se ref.
Machine Hours	PMH/year	3975	4479	3915	4419	productive machine hours, PMH According to cost models se ref.
Moving costs	€/РМН	0,96	0,85	1,99	1,77	allocated per PMH, According to cost models, se ref.
Labour cost	€/РМН	26,00	23,10	26,40	23,40	excluding taxes and social costs
Infrastructure costs	€/ m³	-	-	-	-	costs for infrastructure roads and terminals allocated per m ³
Total Costs per PMH	€/РМН	88	61	90	59	
Productivity/	m ³ sub/PMH	22,8	15,3	11.1	14,3	According to time functions, see below
Fuel use	l/PMH	16,1	14,6	16,1	11	Diesel oil, 0,820 kg/m3 MK1 (www.agrol.se)
Use of lubricants	l/PMH	0,8	0,45	0,8	0,45	Biogradable lubricants, 1,2 kg/m3 (www.agrol.se)
Use of	kg/PMH	0	0	0	0	G. (G /

chemicals							
Fuel cost		€/l	1	1	1	1	incl. taxes, According to cost
							models, see below
Lubrication	n	€/1	3	3	3	3	incl. taxes, According to cost
cost							models, see below
Cost	for	€/kg	-	-	-	-	incl. taxes, According to cost
chemicals							models, see below
Cost	for	€/PMH	17	8	17	6,5	includes repair, tyres,
maintenance							According to cost models, see
							below.

Tab 5 Characteristics of machine operations in Single FWC Scandinavian Pine chain

Supporting data files:

Tidsfunktioner skotningFWC2007.xls

Tidsfunktioner skördare FWC 2007.xls

Productivity and sorting Nordic test chain final felling NPC. Calc

Productivity and sorting Nordic test chain NPC thinning medium TB. Calc

1 Indata for timber transport with road vehicle						
Gasoline price	1,092					
Gasoline consumption in average (l/100km)	53,500					
Fuel = (2) / 100 x (1)	0,584					
Tires	0,069					
Maintenance	0,084					
Toll						
TOTAL $ \in / KM = (3) + (4) + (5) + (6) $	0,738					
TOTAL $ €/KM = (3) + (4) + (5) $	0,738					
Truck cost	192,993					
Semi trailer cost	54,435					
Crane cost						
Insurance	29,732					
Taxes (incl. axle tax)	20,750					
Daily vehicle cost $(\text{€/jour}) = (9) + (10) + (11) + (12) + (13)$	297,910					
Wages and other compensations	327,076					
Labour charges	145,983					
Other fees: hotel, restaurant						
Daily crew cost $(€/jour) = (14) + (15) + (16)$	473,059					
Daily structural (overheads)costs (€/jour)	0,000					
TOTAL €/JOUR = $(14)+(18)+(19)$	770,968					
Hours per day	18:69					

Load capacity (normal regulation vs. usual practices?)	44,55
Load capacity (specific wood regulation if any)	
Loading (hh:mm)	00:45
Unloading (hh:mm)	00:29
Empty backhaulage (km or %)	48

Tab 6 Performance of road transport of sawlogs. Truck 3 axles + trailer 4 axles with removable crane. Single FWC Scandinavian Pine chain

2.1.4 Assumptions

The harvested volume is described as solid cubic metres under bark of reasons that the national statistics are referred to this assortment (Table 7). However the bark is vital part of the product since it yields energy for production processes and also contains carbon that is to be recorded in the chain. The amount of bark on the trees varies with their age and size, also with its actual position on the stem. In this case for the reason of simplicity it is assumed that all logs in the same cutting mode have the same percentage of bark.

2.1.5 Conversion factors

	Product ID	Log length m	Top diam. Mm ob	Bark content, %	Fresh weight ton per m ³ ob	Carbon, tons per m ³ sub
Saw timber final	2042000	4,70	220	11,8	0,937	0,240
felling						
Saw timber thinning	2042000	4,65	180	14,2	0,937	0,246
Pulp wood final felling	2043000	4,17	146	11,8	0,937	0,240
Pulp wood thinning		4,20	129	14,2	0,937	0,246
Fuel wood final	2044000	4,47	189	11,8	0,937	0,240
felling(downgraded						
industrial wood)						
Fuel wood thinning	2044000	4,40	139	14,2	0,937	0,246
(downgraded						
industrial wood)						

Tab 7 Raw material properties in Single FWC Scandinavian Pine chain based on general averages

Product	Product ID	Log length [m]	Top diam. [mm ob}	Bark content, [%]	Fresh weight [ton per m ³ ob] ¹⁾	a. Carbon, [tons per m ³ sub]	b. Carbon, in bark [tons per m ³ sub]	a+b
Saw timber final felling	2042000	4,5	220	11,6	0,826	0,205	0,017	0,222
Saw timber thinning	2042000	4,4	186	12,8	0,876	0,196	0,019	0,215
Pulp wood final felling	2043000	4,2	146	10,9	0,866	0,195	0,017	0,212
Pulp wood thinning		4,2	129	13,1	0,899	0,189	0,021	0,210
Fuel wood final felling(downgrad ed industrial wood)	2044000	4,3	189	11,2	0,756	0,2	0,017	0,217
Fuel wood thinning (downgraded industrial wood)	2044000	4,4	139	13,0	0,765	0,19	0,02	0,210

¹⁾ Fuel wood calculated as 90% of the fresh weight of the initial fresh weights of the industrial

Tab 8. Raw material properties in Single FWC Scandinavian Pine chain, based on bucking simulation and predictions of bark of tree data from selected plots in the county of Västerbotten

2.1.6 Data delivered to M1

Indicator	Ind. unit	Clear cut with large single-grip	Final measuring and sorting of pine logs according to quality at	Pre-commercial thinning of planted pine stand in young	Felling with large harvester	Forwardin after:	g of pine
		harvester	sawmill	phase		thinning	final felling
Process ID		1000003	1000025	1000027	1000034	1000046	1000058
LI02c - Production cost - labour costs	EUR	1,14	0,29	191,7	2,38	1,64	1,51
LI02d - Production cost - energy costs	EUR	0,81	0	18,3	1,67	1,12	1,04
LI02e - Other productive costs	EUR	0,04	0	0	0,18	0,12	0,06
LI02f - Non- productive costs	EUR	1,88	0	6,7	3,89	1,46	1,36
LI09a - Employment	perso n	0,05066	0,0138	14,7	0,067	0,072654	0,067

male							
LI09b -	perso	0,00495	0,001364	1,63	0,007	0,007103	0,00655
Employment	n						
female							
LI09c -	perso	0,04531	0,012427	13,39	0,094	0,064998	0,05993
Employment	n						
urban							
LI09d -	perso	0,01029	0,002728	2,93	0,021	0,014759	0,01361
Employment	n						
rural							
LI10a - Wages	EUR	1,14	0,29	191,7	2,38	1,64	1,51
and salaries male	THID		0.00	404 7	2.20	1 < 1	,
LI10b - Wages	EUK	1,14	0,29	191,/	2,38	1,64	1 51
and salaries							1,51
temale	LZW/I	0	0	0	0	0	0
LII3.2.a - Energy	KWN	0	0	0	0	0	0
use (renewable)	LZW/1	26.5	0	407	F 4	20.2	26
LIIS.2.D - Energy	ĸwn	20,5	0	487	54	38,3	30
use (non-							
L 114.2 e. Carbon	tons	0.24	0	0.806	0.24	0.24	0.24
sequestration in	of	0,24	0	0,000	0,24	0,24	0,24
barvested wood	ore						
products							
LI14.1 -	tons	2.51	0	49.1	5.12	3 63	3 44
Greenhouse gas	of	2,51		19,1	5,12	5,05	5,11
emissions per	CO2						
process	ea.						
LI11.1.a -	cases	2,5E-07		8	2,5E-07	2,5E-07	2,5E-07
Occupational		-)					- ,
accidents (non-							
fatal) - absolute							
numbers							
LI11.1.b -		0,004		0,006	0,004	0,004	0,004
Occupational							
accidents (non-							
fatal) - % per							
1000 employees							
LI11.1.c -	cases	2,5E-08		0,652	2,5E-08	2,5E-08	2,5E-08
Occupational							
accidents (fatal) -							
absolute numbers				-			
Ll11.1.d -		0,07		0,07	0,07	0,07	0,07
Occupational							
accidents (fatal) -							
% per 1000							
L I I I 1 2 b	0/0	0.3		0.3	0.3	0.3	0.3
Occupational	70	0,5		0,5	0,5	0,5	0,5
diseases - % per							
1000 employees							
LI19.3.a - Non-	kg	2.14	0	78.1	4.37	3.1	2.91
greenhouse gas	8	_,	~	· ~,*	.,~ ,	~,-	_,
emissions into air							
- SO2							
LI19.3.b - Non-	kg	32,3	0	62,6	65,7	45,9	43,1
greenhouse gas	0	-		*	-		-
emissions into air							
- Nox							
LI19.3.c - Non-	kg	5,61	0	1,67	11,4	8,11	7,62
greenhouse gas							
emissions into air							
- NMVOC							

LI19.3 - Non-		1,71E-06	0	0,000054	3,49E-06	2,48E-06	2,33E-06
greenhouse gas							
emissions into air							
- NH3							
LI24.1.b -	cases	0,0556	0,015154	16,32	0,116	0,079	0,074
Persons							
employed - high							
skilled workers							

Indicator	Ind.	Transport by 60t truck with crane acc to				Final measuring and	Final mea	asuring and
	unit	assortment				sorting acc. to	sorting ac	cc. to
						quality at pulpmill	quality at	
D ID		1000101	4000402	4000402	1000101	1000100	sawmill	pulpmill
Process ID	TIT	1000101	1000102	1000103	1000104	1000109	1000116	1000118
LI02c - Production	EUR	0,024505	0,024505	0,024505	0,024505	0,29	0,29	0,29
cost - labour costs							_	
Ll02d - Production	EUR	0,029194	0,029194	0,029194	0,029194	0	0	0
cost - energy costs	TIT	1.0.0	1.0.0		1.00			
Ll02e - Other	EUR	1,08	1,08	1,08	1,08	0	0	0
productive costs	TIT							
Ll02t - Non-	EUR	0,023087	0,023087	0,023087	0,023087	0	0	0
productive costs		0.004005	0.00.4005	0.004005	0.004005	0.0120	0.0120	0.0120
L109a - Employment	perso	0,004225	0,004225	0,004225	0,004225	0,0138	0,0138	0,0138
male	n	0.000275	0.000275	0.000275	0.000275	0.0012(1	0.00126	0.0012(1
LI09b - Employment	perso	0,000375	0,000375	0,000375	0,000375	0,001364	0,00136	0,001364
I I I I I I I I I I I I I I I I I I I	n	0.002772	0.002770	0.002772	0.002772	0.012427	4	0.010407
LI09c - Employment	perso	0,003772	0,003772	0,003772	0,003772	0,012427	0,01242	0,012427
Urban	n	0.00092	0.00092	0.00092	0.00092	0.002729	/	0.002729
LI09d - Employment	perso	0,00085	0,00085	0,00085	0,00085	0,002728	0,00272	0,002728
I II I Wagoo and		0.052	0.052	0.052	0.052	0.20	0 20	0.20
calarias mala	LOK	0,032	0,032	0,032	0,032	0,29	0,29	0,29
L I10b Wages and	EIIB	0.052	0.052	0.052	0.052	0.29	0.20	0.20
calarias famala	LOK	0,032	0,032	0,032	0,032	0,29	0,29	0,29
I I I I I I I I I I I I I I I I I I I	KW/b	0	0	0	0	0	0	0
(renewable)	1	0	0	0	0	0	0	0
LI132b - Energy use	KWh	1.075	1.075	1.075	1.075	0	0	0
(non-renewable)		1,070	1,070	1,070	1,010	č	Ŭ	č
LI14.2.e - Carbon	tons	0.24	0.24	0.24	0.24	0.24	0.24	0.24
sequestration in	of C	~, _ .	~, _ .	~ ,	~ ,	·,_ ·	° ,	°,
harvested wood								
products								
LI14.1 - Greenhouse	tons	0,0982	0,0982	0,0982	0,0982	0	0	0
gas emissions per	of	,	,	,	,			
process	CO2							
L	eq.							
LI15.1.a - Transport		93	93	93	93			
distance - road								
transport								
LI15.2.a - Freight		4102523	2970792	575554,7	2040603			
volume - road								
transport								
LI19.3.a - Non-	kg	0,0822	0,0822	0,0822	0,0822	0	0	0
greenhouse gas								
emissions into air -								
SO2								
L119.3.b - Non-	kg	0,761	0,761	0,761	0,761	0	0	0
greenhouse gas								
emissions into air -					1			
INOX	1	0.010	0.010	0.010	0.010		0	0
L119.3.c - Non-	кg	0,218	0,218	0,218	0,218	U	U	0

greenhouse gas emissions into air - NMVOC								
LI19.3 - Non- greenhouse gas emissions into air - NH3		0,000226	0,000226	0,000226	0,000226	0	0	0
LI24.1.b - Persons employed - high skilled workers	cases	0,080843	0,080843	0,080843	0,080843	0,015154	0,01515 4	0,015154

2.2 Spruce test chain

2.2.1 Set-up of test chain

The spruce chain, located in Baden Wurttemberg, Germany, was designed to be the first chain at which MCA and CBA should be tested and for this reason two strands of alternatives (=chains) were modelled for M2 and M3. Nevertheless, similarly to the pine chain, certain aspects of the chain were chosen to be left out at this point of time for reasons of simplicity. Those were:

- Trees to be removed in pre-commercial thinning
- Harvest residues from thinning operations
- 1.-2. thinning operation: only harvesting and forwarding costs were considered which add to the value of the chosen operation from thinning 3-6.
- Pulpwood from harvesting processes has not been followed along its way to the mill

The two followed chains were chain a:

Starting from a spruce forest stand with natural regeneration at a steep slope (> 45 % inclination), with 6 thinnings and motor-manual selective harvesting of long whole trees (97%) and harvest residues (3%) left in forest, involving haulage by skidder, cross-cutting into long sawlogs (92%) and pulpwood (8%). Calculations in this case are only for one assortment (sawlogs). Transport by 40 t truck to millgate.

As well as chain b:

Planted spruce forest stand in easy terrain (< 44% inclination), involving a lower number of stems (target: 200 future trees) and 6 thinnings, fully mechanised selective harvesting by medium harvester at targeted DBH of 35 cm with 20 m distance between skidding lines. Assortments: 69 % saw logs and 31 % pulpwood, harvest residues of 5 % from the harvested trees (95 %) were left in forest. Calculations in this case are only for one assortment (sawlogs). Forwarding by forwarder, transport by 40 t truck to millgate.

N	12	•••	• • • • •	Trees marked for pre-commercial thinning Trees marked for 1. and 2. thinning Trees marked for 3. and 4. thinning thin thin thin thin thin thin thin thin
	٠	•	•	Harvesting
• •	• • •	• •	• •	10000100_12. thinning: 1000010_12. thinning: 1000010_12. thinning: 1000010_Pre detranchiom gestign and detranchiom gestign and detranchiom gestign and detranchiom gestign and
			٠	- commercial sorting acc. to quality sorting acc. to quality debranching, exit, pre-sorting pre-sorting
				operations
		• •	• •	pole length tree (for later residues tree (for later residues and the for later residues tree (for later residues tree (f
				Harvest cross-cuting): 9 % cross-cuting): % 10p diameter diameter diameter diameter diameter s8cm + 20m
		•	1. 1. 1. 1. I.	-8 cm < 8 cm < 8 cm
	٠	.*	•	Harvest residues 16%
A -	An		• •	· · · · · · · · · · · · · · · · · · ·
IV	13	.*	٠	Forwarding 10000XX_Skidding with double-winch wheel skidder 1000075_Skidding with double-winch wheel skidder 1000075_Skidding with medium forwarder 1000063_Forwarding with large forwarder
			• •	nele length ing pulpwood pied sawlogs pulpwood pied sawlogs pulpwood pied sawlogs
				piled at road piled at the log piled at piled at the piled at the at the road side piled at the piled at the piled at the road side acc to size and road side, road side
				assortment, acc to size acc to acc to size
• •				quality; 16% quality; 52c and 8% 36% 31%
*	*	.*	1	
• •	• • •	• •	• •	Transport 1008079_Transport by truck for long timber with + 1000042_Transport by truck for short timber + crane (acc to assortment size quality mill) with crane (acc to assortment size quality mill)
		• •		Timber transported to saw milt, 100% *
er sen ser ser för sen sen ser g	10 x10 x10 x11 \$10 x10 x10 x11 \$10 \$10	un un fan un un un ski s	ar san san sije eer oor san sije eer oor o	Mill gete 1000076_Measuring, cross- cuting and earting ace, to
-			a a	Sawmilling
	11			miling .

Fig 2: M3 part of the Pine test chain with input from M2 and output to M4.

Thinning id)	h _o	N/ha	dbh	v	V/ha
and phase of	(m)		(cm)	$(m^3 o. bark)$	$(m^3 o. bark)$
development				$(Vfm_D m.R.)$	$(Vfm_D m.R.)$
1) medium	12.5	652	14	-	56
2) medium	15.5	268	19	-	53
3) medium	18	136	24	-	50
4) medium	21	87	28	-	50
5) medium	23.5	62	33	-	53
6) medium	26	50	37	-	50

Input Data from M2 in chain A:

Input Data from M2 in chain B:

Thinning id)	h _o	N/ha	dbh	v	V/ha					
and phase of	(m)		(cm)	(m ³ o. bark)	$(m^3 o. bark)$					
development				$(Vfm_D m.R.)$	$(Vfm_D m.R.)$					
1) medium	15	420	12	0.07	30					
2) medium	18	730	15	0.13	95					
3) medium	21	520	16	0.19	100					
4) medium	24	250	18	0.26	65					
5) adult	27	130	20	0.36	45					
6) adult	30	50	20	0.39	20					

2.2.2 Calculation Models:

The production output of the harvesting process, the assortments, were calculated with HOLZERNTE 7.0 which is the calculation model for wood harvesting and marketing developed by FVA. The calculation of harvesting and forwarding costs were also calculated with HOLZERNTE 7.0. The machine costs, harvesting, forwarding, transportation and millgate operations were calculated with an excel based calculation models from FVA and ALUFR, based on the figures given in paragraph 2.2.3 "Calculation modes".

2.2.3 Calculation modes

Machine costs were calculated with an excel based calculation model from FVA, based on the following figures:

Investment	€	
Depreciation	years	1 year for motormanual equipment, 4 years for harvester, 7 years for forwarders and skidders
Interest rate	0/0	4% based on Euro market 6 months bonds 2001 - 2006 + 1,9 %
End value	€	<i>,</i>
Administrative costs	€	allocated per PMH
Social costs and taxes		for labour
Taxes machine		
Machine Hours	РМН	productive machine hours, PMH (related to work period according to each cost model
Moving costs		allocated per PMH
Labour cost	€/PMH	excluding taxes and social costs
Infrastructure costs	€/ m ³	costs for infrastructure roads and terminals allocated per m ³
Fuel use	kg/PMH	1
Use of lubricants	kg/PMH	
Use of chemicals	kg/PMH	
Fuel cost	€́/kg	incl. taxes
Lubrication cost	€/kg	incl. taxes
Cost for chemicals	€/kg	incl. taxes
Cost for maintenance	€/PMH	includes repair, tyres

For	the	calculations	of	harvesting	operations	in	addition	to	machine	\mathbf{costs}	an	excel	based
calcu	ilatic	on from ALU	FR	was used in	cluding the	foll	lowing pa	ram	neters:				

LI 10 Employment		Data source
Annual cutting volume of		
sawlogs and pulpwood (spruce,		Statistisches Jahrbuch der Forstverwaltung BW,
fir, douglasfir), m³/y	1676067	2004
		= Annual cutting volume of sawlogs and pulpwood
Timber cut per assortment, m ³ /y	1237775	* Share of harvesting mode
Share of motormanual		
harvesting, %	74	Expert knowledge, FVA
Share of fully mechanised		
harvesting, %	26	Expert knowledge, FVA
Working days / year	220	Expert knowledge, FVA
Working hours / shift	8	Expert knowledge, FVA
No. Shifts/day	1	Expert knowledge, FVA

		= number of shifts * daily working hours *annual		
Working hours/year	1760	working days		
		Statistisches Jahrbuch der Forstverwaltung BW,		
Employees, persons	1334	2005		
		Statistisches Jahrbuch der Forstverwaltung BW,		
Male employees, persons	1321	2005		
		Statistisches Jahrbuch der Forstverwaltung BW,		
Female employees, persons	13	2005		
Male employees, %	99,0	=Total employees /100 * Male employees		
Female employees, %	1,0	=Total employees /100 * Female employees		
Employment, persons / m ³		= 1/Productivity		
Productivity in mechanized				
harvesting at 20 cm DBH, m ³ /h	12,7	Holzernte		
Productivity in mechanized				
harvesting at 35 cm DBH, m ³ /h	15,3	Holzernte		
Productivity in motormanual				
harvesting, m ³ /h	2,5	Expert knowledge, FVA		

LI 11 wages and salaries		Source
For motormanual harvesting:		
wage difference in trades for		IAB 04/2005; "Lohnunterschiede zwischen Frauen
men, %	100	und Männern
wage difference in trades for		IAB 04/2005; "Lohnunterschiede zwischen Frauen
women, %	80,2	und Männern
For machine operations:		
wage difference in machine		IAB 04/2005; "Lohnunterschiede zwischen Frauen
operations for men, %	100	und Männern
wage difference in machine		IAB 04/2005; "Lohnunterschiede zwischen Frauen
operations for men, %	79,2	und Männern

LI 12 Occupational accidents		Data source
fatal accidents in motormanual		
harvesting, number	7	Unfallstatistik im öffentlichen Dienst, BW, 2003
non-fatal accidents in		
motormanual harvesting,		
number	4000	Unfallstatistik im öffentlichen Dienst, BW, 2004
Occupational accidents per m ³		= number of accidents / annual cutting volume of
ub, n/ m³ub		sawlogs and pulpwood

LI 13 Education time		Data source
Annual education time per employee, working days	1	expert knowledge (fobawi)
Working hours / shift	8	
		= lost productive working hours / process-based
Education time, h/m ³ ub		annual cutting volume of sawlogs and pulpwood
		= (lost productive working hours * wages, €/h acc
costs for education, €/m³ ub		to gender ratio (see Indicator 11)) / process-based annual cutting volume of sawlogs and pulpwood

For the calculations of forwarding operations in addition to machine costs an excel based calculation from ALUFR was used including the following parameters:

LI 10 Employment		Data source
Annual cutting volume of		
sawlogs and pulpwood (spruce,		Statistisches Jahrbuch der Forstverwaltung BW,
fir, douglasfir), m ³ /y	1676067	2004
		= Annual cutting volume of sawlogs and pulpwood
Timber cut per assortment, m ³ /y	1014170	* Share of harvesting mode
Share of motormanual		= skidding of long logs;
harvesting, %	74	Expert knowledge, FVA
Share of fully mechanised		= forwarding of short logs;
harvesting, %	26	Expert knowledge, FVA
Working days / year	220	Expert knowledge, FVA
Working hours / shift	8	Expert knowledge, FVA
No. Shifts/day	1	Expert knowledge, FVA
		= number of shifts * daily working hours *annual
Working hours/year	1760	working days
		Statistisches Jahrbuch der Forstverwaltung BW,
Employees, persons	1334	2005
		Statistisches Jahrbuch der Forstverwaltung BW,
Male employees, persons	1321	2005
		Statistisches Jahrbuch der Forstverwaltung BW,
Female employees, persons	13	2005
Male employees, %	99,0	=Total employees /100 * Male employees
Female employees, %	1,0	=Total employees /100 * Female employees
Employment, persons / m ³		= 1/Productivity
Productivity in skidding of long		
logs from felling with 20 cm		
DBH, m ³ /h	5,55	Holzernte
Productivity in skidding of long		
logs from felling with 35 cm		
DBH, m ³ /h	9,66	Holzernte
Productivity in forwarding of		
short logs from felling with 20		
cm DBH, m ³ /h	12,5	Holzernte
Productivity in forwarding of		
short logs from felling with 35		
cm DBH, m ³ /h	13,5	Holzernte
Productivity in motormanual		
harvesting, m ³ /h	2,5	Expert knowledge, FVA

LI 11 wages and salaries		Source
For motormanual harvesting:		
wage difference in trades for		IAB 04/2005; "Lohnunterschiede zwischen Frauen
men, %	100	und Männern
wage difference in trades for		IAB 04/2005; "Lohnunterschiede zwischen Frauen
women, %	80,2	und Männern
For machine operations:		
wage difference in machine		IAB 04/2005; "Lohnunterschiede zwischen Frauen
operations for men, %	100	und Männern

wage	difference	in	machine	
operati	ions for men	,%		79,2

IAB 04/2005; "Lohnunterschiede zwischen Frauen und Männern

LI 12 Occupational accidents		Data source
fatal accidents in motormanual		
harvesting, number	7	Unfallstatistik im öffentlichen Dienst, BW, 2003
non-fatal accidents in		
motormanual harvesting,		
number	4000	Unfallstatistik im öffentlichen Dienst, BW, 2004
share of activity in number of		
accidents, mm harvesting, %	67	kwf, 2005
share of activity in number of		
accidents, forwarding, %	3	kwf, 2005
Occupational accidents per m ³		= number of accidents * share of activity's accidents
ub, n/ m³ub		/ annual cutting volume of sawlogs and pulpwood

LI 13 Education time		Data source
Annual education time per employee, working days	1	expert knowledge (fobawi)
Working hours / shift	8	
Education time, h/m ³ ub		= lost productive working hours / process-based annual cutting volume of sawlogs and pulpwood
		= (lost productive working hours * wages, €/h acc to gender ratio (see Indicator 11)) / process-based
costs for education, ϵ/m^3 ub		annual cutting volume of sawlogs and pulpwood

For the calculations of transport operations an excel based calculation from ALUFR was used including the following parameters, as well as machine costs:

LI 10 Employment		Data source
Annual cutting volume of		
sawlogs and pulpwood (spruce,		Statistisches Jahrbuch der Forstverwaltung BW,
fir, douglasfir), m³/y	1676067	2004
		= Annual cutting volume of sawlogs and pulpwood
Timber cut per assortment, m ³ /y	1014170	* Share of harvesting mode
Share of motormanual		= skidding of long logs;
harvesting, %	74	Expert knowledge, FVA
Share of fully mechanised		= forwarding of short logs;
harvesting, %	26	Expert knowledge, FVA
Working days / year	220	Expert knowledge, FVA
Working hours / shift	8	Expert knowledge, FVA
No. Shifts/day	1	Expert knowledge, FVA
		= number of shifts * daily working hours *annual
Working hours/year	1760	working days
		Statistisches Jahrbuch der Forstverwaltung BW,
Employees, persons	1334	2005
		Statistisches Jahrbuch der Forstverwaltung BW,
Male employees, persons	1321	2005

		Statistisches Jahrbuch der Forstverwaltung BW,			
Female employees, persons	13	2005			
Male employees, %	99,0	=Total employees /100 * Male employees			
Female employees, %	1,0	=Total employees /100 * Female employees			
Employment, persons / m ³		= 1/Productivity			
Loading time per load, min/load	50	expert knowledge (fobawi)			
Unloading time per load,					
min/load	30	expert knowledge (fobawi)			
Distance (loaded plus unloaded),					
km	120	expert knowledge (fobawi)			
Backhaulage, %	0	expert knowledge (fobawi)			
_		= (loading time + unloading time + transport			
Time per load, h	3,33	time)/60 min			
weight of fresh spruce per m ³ , t	0,88	expert knowledge, Skogforsk			
Load volume, m ³ u.b.	20,592	= transport load, t * weight of fresh wood per m^3 , t			
Productivity, m ³ /h	2,5	= load volume / time per load			

LI 11 wages and salaries		Source
For motormanual harvesting:		
wage difference in trades for		IAB 04/2005; "Lohnunterschiede zwischen Frauen
men, %	100	und Männern
wage difference in trades for		IAB 04/2005; "Lohnunterschiede zwischen Frauen
women, %	80,2	und Männern
For machine operations:		
wage difference in machine		IAB 04/2005; "Lohnunterschiede zwischen Frauen
operations for men, %	100	und Männern
wage difference in machine		IAB 04/2005; "Lohnunterschiede zwischen Frauen
operations for men, %	79,2	und Männern

LI 13 Education time		Data source
Annual education time per employee, working days	1	expert knowledge (fobawi)
Working hours / shift	8	
Education time h/m^3 ub		= lost productive working hours / process-based
Education unic, i/ in ub		= (lost productive working hours * wages, \in /h acc
costs for education, €/m³ ub		annual cutting volume of sawlogs and pulpwood

LI 17 Distance and Load		Data source		
Transport distance road				
transport, km	60	expert knowledge (fobawi)		
Transport load long sawlogs, t	23,4	expert knowledge (fobawi)		
Transport load short sawlogs, t	23,5	expert knowledge (fobawi)		

	PARAMETERS			T
	DETERMINING	Tractor + semi-trailer	Solid bully E orden	lead dolly 5 arles
	COUTRY/LOCAL	5 axles with crane	Solid Dulk 5 axies	with graps
	CONDITIONS			with clane
1	Gasoil price	0,860	0,860	0,860
2	Gasoil consumption in average (1/100km)	45,000	45,000	45,000
3	Fuel = (2) / 100 x (1)	0,387	0,387	0,387
4	Tires	0,030	0,030	0,030
5	Maintenance	0,090	0,090	0,090
6	Toll	0,062	0,031	0,062
7	TOTAL $\notin/KM = (3) + (4) + (5) + (6)$	0,569	0,538	0,569
8	TOTAL $\notin/KM = (3) + (4) + (5)$	0,507	0,507	0,507
9	Tractor cost	50,000	44,872	50,000
10	(Semi) trailer cost	11,538	19,231	11,538
11	Crane cost	included in (9)	included in (9)	included in (9)
12	Insurance	included in (13)	18,682	included in (13)
13	Taxes (incl. axle tax)	2,888	5,712	2,888
14	Daily vehicle cost $(€/jour) =$ (9)+(10)+(11)+(12)+(13)	64,427	88,496	64,427
15	Wages and other compensations	166,866	166,866	166,866
16	Labour charges	186,890	148,988	186,890
17	Other fees: hotel, restaurant			
18	Daily crew cost $(\text{€/jour}) =$ (15)+(16)+(17)	353,757	315,854	353,757
19	Daily structural (overheads) costs (€/jour)	84,615	84,615	84,615
20	TOTAL \notin /JOUR = (14)+(18)+(19)	502,799	488,966	502,799
21	Hours per day	10:00	10:00:00	10:00
22	Load capacity (normal regulation vs. usual practices?)	23,5	18,9	23,4
23	Load capacity (specific wood regulation if any)			
a1	Loading (hh:mm)	00:50	03:28	00:50
a2	Unloading (hh:mm)	00:30	00:20	00:40
a3	Empty backhaulage (km or %)	42%		48%

For the millgate operations an excel based calculation from FVA was used including the following parameters:

Annual Production Capacity	m3/year
Investment log yard	€
Depreciation	10 years
End value	10 %
Operating costs	3% of investment
Interest rate	5,5%
Working days	days / year

Working hours	hours / shift
No. Shifts	Shifts /day
Working hours	hours/year
Staff costs	Euro/year
No. of staff	staff per shift
Installed machine power	kW
utilization factor	
Power usage lights, heat etc	kW
energy price	€/kWh
No. of log stackers	

2.2.4 Assumptions:

- Top diameter of the logs: 12 cm
- Top diameter of pulpwood: 8 cm

2.2.5 Conversion Factors:

1m³ ub=1.1m³ ob=1.1*0.18856 t C=0,2074 t C

2.2.6 Data delivered to M1

Chain A (natural regeneration):

		Harvestin	ng	Forwardir	ng	Transport	Mill Gata
Indicator	Unit	12. thinning	36. thinning	12. thinning	36. thinning		Gate
Process ID		1000100	1000099	1000108	1000075	1000079	1000076
LI 2a Production	€/m³ ub	30,10	13,68	8,25	6,91	10,4	3,17
process inputs from the FWC							
LI02c -	EUR	25,64	11,66	6,91	8,17		
Production							
cost - labour							
costs							
L102d -	EUR	1,35	0,61	0,71	0,84		
Production							
cost - energy							
costs							
Ll 9a	persons/m ³ ub	0,000225	0,000225	0,0001	0,0000582	0,0000557	0,00002
Employment male							
LI 9b	persons/m ³ ub	0,000002	0,000002	0,000001	0,0000006	0,0000005	not
Employment	1				-		available
female							
LI 9c	persons/m ³ ub	0,000227	0,000227	0,0001	0,0000588	0,0000562	0,00002
Employment	-						
rural							

LI 9d	persons/m ³ ub	0	0	0	0	0	0
Employment	1 ,						
urban							
LI 10a	€/m³ ub	15.84	7 20	1 35	113	135	0.58
Wages and	0, III ub	10,01	, , 20	1,55	1,15	15,5	0,50
salaries male							
	\mathcal{L} / 3 h	15.04	7.00	1.25	1 1 2	10.0	0.50
LI IUD	ϵ/m^{2} up	15,84	7,20	1,35	1,15	10,69	0,58
wages and							
salaries							
temale	,						
LI 11.1.a	cases/	0,0032	0,0032	0,0001	0,000183	not	not
Occupational	m³ub					available	available
accidents							
(non-fatal):							
LI 11.1.c	cases/	0,000006	0,000006	0,0000002	0,0000002	not	not
Occupational	m³ub					available	available
accidents							
(fatal)							
LI 12.1	h FTE	0,000006	0,000006	0,000008	0,000008	not	not
Education	/p/m ³ ub	,	,	,	,	available	available
time per	, F						
person-vear							
working time							
in the							
1 112 2	f/h ETE	0.000220	0.000220	0.000106	0.000106	pot	not
Tariaia -		0,000229	0,000229	0,000100	0,000100	110t	110t
1 raining	/p/m ^s ub					available	available
expenditure							
per person-							
year working							
time in the							
process							
LI 13.2.b	KWh/m³ ub	11,6	5,30	8,41	7,04	13,4096	6,45
Energy use							
(non-							
renewable)							
LI 15.1.a	km∕ m³ ub	0	0	0	0	60	0
Transport							
distance road							
transport							
LI 15.2.a	t km/ m³ ub	0	00	0	0	23.4	0
Freight	,					,	
volume road							
transport							
II 1/2 -	$tC/m^{3}ob$	0.2074	0.2074	0 2074	0 2074	0 2074	0.2074
Carbon		∪, <u>~</u> ∪≀-т	∪, <u>∽</u> ∪,-⊤	0, <u>4</u> 077	0, <u>4</u> 077	0,4077	∪, ∠ ∪/+
Carbon							
in horroots							
in narvested							
wood							
products:		0.00010	0.004.44	0.00007	0.00400	0.0007/	0.0011
LI 14.1 l	$t CO_2$	0,00318	0,00144	0,00227	0,00190	0,00376	0,0046
Greenhouse	Equivalents/						

gas emissions	m²ub						
per process							
LI19.3.a -	kg	0,00008	0,00004	0,00156	0,00132	0	0
Non-							
greenhouse							
gas emissions							
into air -							
SO2							
LI19.3.b -	kg	0,00301	0,00137	0,02906	0,02456	0	0
Non-							
greenhouse							
gas emissions							
into air -							
Nox							
LI19.3.c -	kg	0,1384	0,06291	0,00009	0,00008	0	0
Non-							
greenhouse							
gas emissions							
into air -							
NMVOC							
LI22.1 -	kg	0,01006	0,0047		0,0413	0	0
Generation							
of waste							
LI22.2 -	kg	0,0011	0,0005		0,0194	0	0
Hazardous							
waste							

Chain B (planted):

		Harvesting	זי ר	Forwardin	g	Transport	Mill Gate
Process ID		1000106	1000107	1000018	1000063	1000042	1000082
Indicator	Unit	12.	36.	12.	36.		
		thinning	thinning	thinning	thinning		
LI 2a	€/m³ ub		7,5			9,3	3,59
Production cost							
- raw materials							
from the FWC							
LI02c -	€/m³ ub	19,08	15,32	8,07	6,54		
Production cost							
- labour costs							
LI02d -	EUR	2,06	1,61	1,15	0,93		
Production cost							
- energy costs							
LI05.1.a -	cases	0,000148	0,000148	0,000148	0,000148		
Enterprises and							
forest holdings							
- micro and							
small							
enterprises (0-							
49 employees)							

LI 9a	persons/m ³	0,000043	0,000036	0,000045	0,000031	0,0000727	0,00001
Employment			8	0	8		
male							
LI 9b	persons/m ³	0,000000	0,000000	0,000000	0,000000	0,0000007	not
Employment		4	4	4	3		available
female							
LI 9c	persons/m ³	0	0	0	0	0	0
Employment							
urban							
LI 9d	persons/m ³	0,000047	0,000037	0,000045	0,000032	0,0000735	0,00001
Employment			1	5	2		
rural							
LI 10a Wages	€/m³ ub	O , 96	0,78	1,49	1,21	13,5	0,49
and salaries							
male							
LI 10b Wages	€/m³ ub	O,96	0,78	1,49	1,21	10,69	0,49
and salaries							
female							
LI 11.1.a	cases/	not	not	0,00019	0,00019	not	not
Occupational	m³ub	available	available			available	available
accidents (non-							
fatal):							
LI11.1.c -	Cases/	not	not	3E-07	3E-07	not	not
Occupational	m ³ ub	available	available			available	available
accidents (fatal)							
- absolute							
numbers							
LI 12.1	h FTE	0,000018	0,000018	0,000012	0,000012	0,000012	not
Education time	/p/m ³ ub	,	,	,	,	,	available
per person-year	, I ,						
working time in							
the process							
LI12.2 -	€/ h FTE	0,000279	0,00158	0,000167	0,000167	0,000167	not
Training	$p/m^{3}ub$,	,	,	,	,	available
expenditure per	, 1 ,						
person-year							
working time in							
the process							
LI 13.2.b	KWh/m ³	8,6	8,58	11,32	9,17	10,74	2,32
Energy use	ub	,	,	,	,	,	,
(non-							
renewable)							
LI 14.2.e	t C/ m³ob	0,2074	0,2074	0,2074	0,2074	0,2074	0,2074
Carbon	,	,	,	,	,	,	,
sequestration in							
harvested wood							
products:							
LI 14.1	t CO ₂	0,00232	0,00231	0,00305	0,00247	0,0030	0,0016
Greenhouse gas	equivalents	,	,	,	,	,~	,
emissions per	/m3 ub						
process	,						
LI 15.1.a	Km/m³ ub					60	

Transport							
distance road							
transport							
LI 15.2.a	t					23,5	
Freight volume							
road transport							
LI19.2.c -	m3		0,00297				
Water pollution							
with hazardous							
substances							
LI19.3.a - Non-	kg	0,00381	0,05534	1,06E-05	0,00172		
greenhouse gas	_						
emissions into							
air - SO2							
LI19.3.b - Non-	kg	0,07099	0,00018	0,039	0,032		
greenhouse gas							
emissions into							
air - Nox							
LI19.3.c - Non-	kg	0,00023		0,000125	0,0001		
greenhouse gas							
emissions into							
air - NMVOC							
LI19.3 - Non-			0,05499				
greenhouse gas							
emissions into							
air - NH3							
LI22.1 -	kg	0,08683	0,04564	0,0387	0,0313	0	0
Generation of							
waste							
LI22.2 -	kg	0,07207		0,0271	0,0219	0	0
Hazardous							
waste							

2.3 Eucalypt test chain

The main focus of the Iberian test chain is on pulp production within the Iberian peninsula. For this pulp production wood from coniferous and deciduous trees is needed. For this reason it consists at M3 level out of two separate parts: harvesting, forwarding and transport of Eucalypt from plantations on the Iberian Peninsula (dark red background in Fig 4), as well as of imported pine wood from Scandinavia (light red background in Fig 4). For the later only the transport is described, as the harvesting, etc. procedure is that of pulpwood in the pine test chain and consequently described there.

The M3-processes of Eucalyptus harvesting to transport to mill are described in the following.

Also for the Eucalypt chain some aspects were included for respecting reality.

Those were: Trees to be removed in pre-commercial thinning in second and third rotation coppice

Followed were, however,

- Planted Eucalyptus ready for first rotation harvesting

- Eucalyptus from coppice ready for first and second rotation harvesting (with precommercial thinning)

Fig 3: M3 part of the Pine test chain with input from M2 and output to M4.

2.3.2. Models for calculation, (which models were used, e.g. Sima Pro, Holzernte, ...)

The cost model used is the Procou Model, developed by AFOCEL in the 90's. It allows to get a production cost.

2.3.3. Calculation modes

Hypothesis in Portuguese conditions for employment calculation							
Productivity per year	woodcutters	2000	m³ ub/y				
	harvester	16000	m³ ub/y				
	medium forwarder	18000	m³ ub/y				

Share of male and female operators	men 99%	women 1%
Eucalyptus annual cutting volume	2683000	m3fub
Eucalyptus mechanization rate	60	%

					Men	Women
	Harvested	Total			harvested	harvested
	volume	number of	Number of	Number	volume	volume
	(m³ ub)	persons	men	of women	(m³ ub/y)	(m³ ub/y)
woodcutters	1073200	537	531	5	1062468	10732
harvester	1609800	101	100	1	1593702	16098
Forwarder	2683000	149	148	1	2656170	26830

Hypothesis for the calculation of total greenhouse gas emission per process.

The total greenhouse gas emission (C) can be share in two parts (C = A+B):

Gas emission to make the machine (A)

Gas emission from oil burning during the process (B)

 $A = \frac{(\text{weight of the machine } \times \text{ machine building C coef. } \times \text{C to CO2 coef.})}{(\text{lifetime of the machine } \times \text{ annual harvested volume})}$

$B = \frac{(\text{oil consumption per hour } \times \text{ number of hour per year } \times \text{ oil burning C coef. } \times \text{C to CO2 coef.})}{\text{annual harvested volume}}$

	Motormanual	harvester	forwarder
Weight of the machine (t)	0.023	20	9.5
Machine building C coefficient	1.5 ²	1.5 ²	1.5 ²
C to CO2 coefficient	3.67	3.67	3.67
Lifetime of the machine (year)	1	7	10
Annual harvested volume (m3 ub)	2000	16000	18000
Oil consumption per hour (L)	1.1 4	12.25 ³	11 3
Number of hour per year	1000	1700	1782
Oil burning C coefficient	0.73/1000 ¹	0.73/1000 ¹	0.73/1000 1
A (t of C/ m3 ub)	6.3308E-05	0.000983	0.0002905
B (t of C/ m3 ub)	0.00147351	0.003487	0.0029175
C (t of C/ $m3$ ub)	0.00153681	0.0044701	0.0032081

¹: ADEME 2005, page 16, tableau 2, Diesel (divided by 1000 to convert coefficient in ton)

- ²: ADEME 2005, page 149, 1st paragraph
- ³: KVLAC 2003, page 179, Table 1, Ireland, Class II for harvester and forwarder
- ⁴ : Harvested sample site

2.3.4. Assumptions

The product share is the same between planted eucalypts and coppice eucalypts after harvesting.

He is divided in two parts: pulpwood logs and harvest residues.

The pulpwood logs represent 77 % and the harvest residues (bark, leaves, branches, stem < 7cm) 23 %. We assume that barking is all done on the field.

This share is made only for the above ground biomass as shown on the picture below

2.3.5. Conversion factors

Conversion factor from standing volume (SV) to a cutting volume (CV), based on the assumption above: CV = 0.77 X SV

Conversion factors from volume unit to weight unit at basic density:

 1 m^3 under bark = 0,584 ton

Conversion factors from wood weight to CO2 tons: 1 ton of wood at basic density = 0,5 ton of carbon = 1,835 ton of CO2

Conversion factors from carbon to cubic meter: 3.425

Indicator	Ind.	Clear cut	Harvesting of	Felling with	Forwarding of pine		Harvesting of	Final
	unit	with large	planted	large	after:		coppice	measuring,
		single-grip	eucalyptus with	harvester			eucalyptus	grading and
		harvester	medium single-				with small	sorting
			grip harvester				single-grip	
					thinning	felling	harvester	
Process ID		1000003	1000030	1000034	1000046	1000058	1000070	1000073
LI02a -	EUR		8,5				8,5	

Production cost -								
raw materials								
LIO2c -	EUR	1 1 4		2.38	1 64	1 51		
Production cost -	LOR	1,11		2,00	1,01	1,01		
labour costs								
LI02d -	EUR	0,81		1,67	1,12	1,04		
Production cost -								
energy costs	TUD	0.04		0.40	0.40	0.04		
Ll02e - Other	EUR	0,04		0,18	0,12	0,06		
I 102f Nor	EUD	1 99		3.80	1.46	1.36		
productive costs	LUK	1,00		5,69	1,40	1,50		
LI09a -	perso	0,05066	1593702	0,067	0,072654	0,067	1062468	
Employment	n	,		,	,	,		
male	hour							
LI09b -	perso	0,00495	16098	0,007	0,007103	0,00655	10732	
Employment	n							
temale	hour	0.04521	1704000	0.004	0.064009	0.05002		
Employment	perso	0,04551	1/94000	0,094	0,064998	0,05995		
urban	hour							
LI09d -	perso	0,01029	7898615	0,021	0,014759	0,01361		
Employment	n	,		,	,	,		
rural	hour							
LI10a - Wages	EUR	1,14	1,26	2,38	1,64	1,51	1,26	
and salaries male								
LI10b - Wages	EUR	1,14	1,14	2,38	1,64	1,51		
and salaries								
I II32b - Energy	MI	26.5	14	54	38.3	36	14	
use (non-	mj	20,5	1,1	51	50,5	50	1,1	
renewable)								
LI14.2.e - Carbon	tons	0,24	1,07164	0,24	0,24	0,24	1,07164	
sequestration in	of C							
harvested wood								
products	1	2.51	0.004219	E 10	2 (2	2.4.4	0.001524	
LI14.1 - Greenhouse ms	кg GW/Р	2,51	0,004218	5,12	3,03	3,44	0,001554	
emissions per	100							
process								
LI11.1.a -	cases	2,5E-07	2,82E-06	2,5E-07	2,5E-07	2,5E-07	2,82E-06	
Occupational								
accidents (non-								
fatal) - absolute								
I III 1 h	600 00	0.004	0	0.004	0.004	0.004		0
Occupational	Cases	0,004	0	0,004	0,004	0,004		0
accidents (non-								
fatal) - % per								
1000 employees								
LI11.1.c -	cases	2,5E-08	6,62E-13	2,5E-08	2,5E-08	2,5E-08	6,62E-13	
Occupational								
accidents (tatal) -								
absolute numbers	0/	0.07	0	0.07	0.07	0.07		0
Occupational	70	0,07	0	0,07	0,07	0,07		U
accidents (fatal) -								
% per 1000								
employees								
LI11.2.b -	%	0,3	0	0,3	0,3	0,3		0
Occupational								
diseases - % per								

1000 employees							
LI19.3.a - Non-	g	2,14		4,37	3,1	2,91	
greenhouse gas							
emissions into air							
- SO2							
LI19.3.b - Non-	g	32,3		65,7	45,9	43,1	
greenhouse gas							
emissions into air							
- Nox							
LI19.3.c - Non-	g	5,61		11,4	8,11	7,62	
greenhouse gas							
emissions into air							
- NMVOC							
LI19.3 - Non-	g	1,71E-06		3,49E-06	2,48E-06	2,33E-06	
greenhouse gas							
emissions into air							
- NH3							
LI24.1.b -	perso	0,0556	0	0,116	0,079	0,074	0
Persons	n						
employed - high	hour						
skilled workers							

Indicator	Ind. unit	Transport by truck with crane	Forwarding by medium forwarder (12 tons)	Transport by 60t truck with crane acc to assortment		Final measuring and sorting acc. to quality at pulpmill	Final measuring and sorting acc. to quality at pulpmill	Pre-commercial thinning of 6-7 shoots per stool on second and third rotation
Process ID		1000074	1000080	1000102	1000104	1000109	1000118	1000136
LI02a -	EUR	0,148	5					150
Production cost -								
raw materials								
from FWC								
LI02c -	EUR			0,024505	0,024505	0,29	0,29	
Production cost -								
labour costs								
LI02d -	EUR			0,029194	0,029194	0	0	
Production cost -								
energy costs	FUD			1.00	1.00	0		
Ll02e - Other	EUR			1,08	1,08	0	0	
productive costs	TUD			0.00007	0.000007	0	0	
LIU2f - Non-	EUK			0,023087	0,023087	0	0	
productive costs			2(5(170	0.004005	0.004225	0.0120	0.0120	10(24(0
L109a -	perso		2656170	0,004225	0,004225	0,0158	0,0138	1062468
Employment	11 hour							
LIOOP	noui		26830	0.000375	0.000375	0.001364	0.001364	10732
Employment	perso		20030	0,000373	0,000375	0,001304	0,001304	10732
female	hour							
L 109c -	nerso			0.003772	0.003772	0.012427	0.012427	
Employment	n			0,000772	0,003772	0,012127	0,012127	
urban	hour							
LI09d -	perso			0,00083	0,00083	0,002728	0,002728	
Employment	n			,	,	,	,	
rural	hour							
LI10a - Wages	EUR	0,03	1,14	0,052	0,052	0,29	0,29	
and salaries male								
LI10b - Wages	EUR	0,03		0,052	0,052	0,29	0,29	
and salaries								
female								
LI13.2.b - Energy	MJ	1,075	1,22	1,075	1,075	0	0	0,55

use (non- renewable)								
LI14.2.a - Carbon								1 07164
sequestration in								1,07101
woody living								
biomass (above								
ground)								
III42 a Carbon	tops	0.215	1.07164	0.24	0.24	0.24	0.24	
LI14.2.e - Calboli	tons of C	0,215	1,07104	0,24	0,24	0,24	0,24	
	OLC							
narvested wood								
products	,	0.4.2	0.0024	0.0000	0.000			0.004504
LI14.1 -	kg	9,13	0,0026	0,0982	0,0982	0	0	0,001534
Greenhouse gas	GWP							
emissions per	100							
process								
LI11.1.a -	cases		2,51E-06					2,26E-05
Occupational								
accidents (non-								
fatal) - absolute								
numbers								
LJ11.1.c -	cases		5.23E-13					4.24E-11
Occupational	cubeb		0,202 10					·,= ·= · · ·
accidents (fatal) -								
absolute numbers								
		02		02	02			
LIIJ.I.a -		95		93	93			
Transport								
distance - road								
transport		0.400.470		2050502	2010102			
LI15.2.a - Freight		9689473		2970792	2040603			
volume - road								
transport								
LI19.3.a - Non-	g			0,0822	0,0822	0	0	
greenhouse gas								
emissions into air								
- SO2								
LI19.3.b - Non-	g			0,761	0,761	0	0	
greenhouse gas	_							
emissions into air								
- Nox								
LI19.3.c - Non-	g			0,218	0,218	0	0	
greenhouse gas	U							
emissions into air								
- NMVOC								
LI19.3 - Non-	g			0.000226	0.000226	0	0	
greenhouse gas	0			.,	.,			
emissions into air								
- NH3								
I I24.1 b	Dorso	0	0	0.080943	0.080942	0.015154	0.015154	
L124.1.0 -	perso		U U	0,000043	0,000043	0,013134	0,013134	
rersons	II hour							
employed - high	nour							
skilled workers								

3 Perspective/further work

After this first experience from the test chain, most of the assumptions and conversion factors are set. This will lead to further work on embedded single chains within the respective case studies. For this work the entire set of general indicators (Set 5) will be used. This work will be mainly carried out in the EFORWOOD Client, provided by M1, IFER.

4 Literature

Project-intern literature:

Rametsteiner, Pülzl, Puustjärvi. EFORWOOD Indicator Draft Set 4 (2006)

Rametsteiner, Pülzl, Puustjärvi. EFORWOOD Indicator Draft Set 5 (2006)

Trasobares, Lindner, Suominen. D1.4.3 Description of modelling framework (2007)

www.eforwood.com

Berg, Staffan. 2006, D3.2.3. SI-data for harvesting operations based on PD3.2.1 and PD3.2.2. Deliverable from Module 3. <u>www.eforwood.com</u>

Wilhelmsson, L. Arlinger, J. Moberg, L. 2006. Examples of bucking simulation including prediction of properties based on input data from Swedish National Forest Inventory, and TimAn and Pri-analyses software. Internal document Wp 3.1. 2006-09-15. 10 pp.

Project-extern literature:

European Commission (2005). Sustainable Development Indicators for the European Union. Luxemburg: Eurostat.

Kirkpatrick, C., and C. George. 2005. Sustainability impact assessment of proposed WTO negotiations. Overall project final report for sector studies: agriculture, distribution services, forests.

Mendoza and Prabhu, 2002. Multidimensional measurements and approaches to forest sustainability assessments, in: Pukkala, T. (Ed.), Multi-objective forest planning, Kluwer Academic Publishers, The Nederlands, pp. 71-98.

MCPFE (Ministerial Conference on the Protection of Forests in Europe) 2002. Improved Pan-European Indicators for Sustainable Forest Management. MCPFE Expert Level Meeting 7-8 October 2002, Vienna, Austria.

Erik Eriksson and Staffan Berg. 2007. Implications of environmental quality objectives on the potential of forestry to reduce net CO_2 emissions ? a case study in central Sweden.Forestry, April 2007; vol 80(2): 99 - 111

Brunberg, T., 1995. Basic data for productivity norms for heavy-duty single-grip harvesters in final felling. The Forestry Research Institute of Sweden, Redogörelse nr 7, Uppsala. pp. 22 (In Swedish with summary in English).

Brunberg, T., 1997. Basic data for productivity norms for single-grip harvesters in thinning. The Forestry Research Institute of Sweden, Redogörelse nr 8, Uppsala. pp. 18 (In Swedish with summary in English).

Brunberg, T. 2004. Productivity-norm data for forwarders. The Forestry Research Institute of Sweden, Redogörelse nr 3, Uppsala. pp. 12 (In Swedish with summary in English).

Hannrup, B. 2004. Functions for estimating of bark thickness of Scots pine and Norway spruce by CTL harvesters. Swedish title: Funktioner för skattning av barkens tjocklek hos tall och gran vid avverkning med skördare. Work report 575. Skogforsk, Uppsala. pp 1-33. (In Swedish).

Lamlom, S H. Savidge, R A. 2003. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass and Bioenergy 25. pp 381-388.

Marklund, L.G., 1988.Biomass functions for pine, spruce and birch in Sweden. Swed. Univ. Agri. Sci. Dept. of Forest Survey. Umeå, Sweden. Report 45. pp. 73. (In Swedish with summary in English).

Ogemark, T. & Arlinger, J. 2003. TimAn 2.0 (Timber Analyses), 2003-03-17. Users guide. Swedish title: Användarhandledning. Skogforsk, Uppsala, 11 pp. (In Swedish).

Wilhelmsson, L. 2006. Two models for predicting the number of annual rings in cross-sections of tree stems. Scandinavian Journal of Forest Research 21, Supplement 7, pp 37-47.

Wilhelmsson, L. Arlinger, J. Spångberg, K. Lundqvist, S-O. Grahn, T. Hedenberg, Ö. Olsson, L. 2002. Models for Predicting Wood Properties in Stems of *Picea abies* and *Pinus sylvestris* in Sweden. Scandinavian Journal of Forest Research 17:4, pp 330-350.

Wilhelmsson, L. Moberg, L. 2004. Volume weights of green logs. Predicted mean values and deviations based on models and scaling statistics. Swedish title: Viktsutredning - Råvolymvikter. Prognos för medelvärden och spridningsmått med hjälp av beräkningsmodeller och vägning vid mätstationer. Work report 569. Skogforsk, Uppsala. pp 1-35. (In Swedish).

Anon 2005. Swedish Statistical Yearbook of Forestry 2006. National (Swedish) Board of Forestry. Official Statistics of Sweden. Jönköping. <u>www.svo.se/statistics</u>; SYS 2006

Anon 2005 Statistcal Yearbook of Sweden 2006, Statistiska Centralbyrån. Official Statistics of Sweden. Stockholm <u>www.scb.se</u>; SSY 2005