Moderate Resolution Optical Satellite Data Applications for Forest Change Assessment

Peter Potapov, UMD GLAD

https://glad.umd.edu/

Satellite Data Application for National Forest Assessment

Harmonization of National Forest Assessment Reports

GLOBAL LAND ANALYSIS & DISCOVERY

Near-Real-Time Forest Monitoring

GLAD Forest Loss Alerts

nature climate change

Explore content Y Journal information Y Publish with us Y

nature > nature climate change > analyses > article

Analysis | Published: 04 January 2021

The impact of near-real-time deforestation alerts across the tropics

Fanny Moffette 🖂, Jennifer Alix-Garcia, Katherine Shea & Amy H. Pickens

 Nature Climate Change 11, 172–178 (2021)
 Cite this article

 1889 Accesses
 1 Citations
 498 Altmetric
 Metrics

Subscriptions to alerts in 22 tropical countries decrease the probability of deforestation in Africa by 18%.

The alert system's value is between US\$149 million and US\$696 million in social cost of carbon for avoided deforestation in Africa.

Continuous Mapping of Forest Stand Variables

GLAD Landsat Analysis Ready Data

https://glad.umd.edu/ard/home/

Global Forest Change Analysis, 2000-2020

Global Forest Change Analysis, 2000-2020

5m

| 5m

Global Forest Height Time-series Prototype

Global Forest Change Analysis, 2000-2020

GLOBAL LAND

Net global forest dynamics			
	Forest, 5m	Forest, 20m	FAO forest
2000 (ha×1,000)	4,122,608	1,595,108	4,158,050
2020 (ha×1,000)	4,022,103	1,529,824	4,058,933
Change, % 2000	-2.4	-4.1	-2.4

3.3% of the year 2020 forest are new forest stands

7.5% of the year 2000 forest area affected by stand-level disturbances

Stable forest 2000-2020

5.6% of the year 2000 forest was lost by the year 2020

The NFI Data and RS-based Products

OPEN

Sample Analysis for Map Uncertainty and Area Estimation

Direct area extraction from the national or global maps

Satellite-based maps provides spatially consistent, wall-to-wall data...

However:

- All maps derived from remotely sensed data contain errors due to data limitation, classification/change detection algorithm limitation, analyst errors and bias, etc.
- Errors usually introduce bias in area estimations. The map errors may be spatially biased.
- The uncertainty of classification may not be estimated from the map alone.

Recommend "good practice" for area reporting

National (continental, global) land cover mapping and monitoring

Stratified sampling design Regression estimators

Map accuracy Map adjustment

Sample analysis (national or sub-national)

- Map validation.
- Estimation of the unbiased area of land cover classes and changes with known uncertainties.
- Additional thematic attribution (i.e., change drivers).

Sample analysis that employs probability sampling allows to estimate the **unbiased area** of land cover classes and change; estimate area **uncertainty**; and perform value-added thematic analysis based on sample reference data (e.g., to differentiate land cover change by drivers).

Sample Analysis for Map Uncertainty and Area Estimation

SCIENCE ADVANCES | RESEARCH ARTICLE

ENVIRONMENTAL STUDIES

AL THE LEVIL

Congo Basin forest loss dominated by increasing smallholder clearing

Alexandra Tyukavina¹*, Matthew C. Hansen¹, Peter Potapov¹, Diana Parker¹, Chima Okpa¹, Stephen V. Stehman², Indrani Kommareddy¹, Svetlana Turubanova¹

DOI: 10.1126/sciadv.aat2993

2002 2003

2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

2001