Towards a sustainable European forest based bioeconomy

Assessment and the way forward

Georg Winkel

Think Forest Seminar: Looking ahead to a circular European bioeconomy

Georg.winkel@efi.int

Brussels, 07-11-2017

www.efi.int
Study: Towards a sustainable European forest based bioeconomy – assessment and the way forward

• Assigned by EFI’s MDTF for policy support
• 48 scientists from 26 institutions in 12 countries

Main objectives: review scientific knowledge regarding:
• the importance of forests for a European bioeconomy
• economic, social and environmental sustainability
• future developments that may affect the forest-based bioeconomy
Main contents of the study

1. European policy framework
2. Critical issues
 - Biomass availability, biodiversity, climate change, resource efficiency, amenity values, competitiveness, employment, forest ownership, forest-product markets, non-wood forest products
3. Bioeconomy indicators
4. **Policy relevant conclusions**
II. Core findings and policy relevant conclusions

1. The scope of the forest-based bioeconomy
2. Regional diversity
3. Sustainability
4. Bioeconomy and society
II.1 The scope of a forest-based bioeconomy

Key findings

- Current bioeconomy strategies and their implementation focus on forest biomass (Sec. 2.2: Pülzl, Giurca, Kleinschmit, Arts, Mustalahti, Sergent, Secco, Pettenella, Brukas)
- Non-wood forest products and other forest ecosystem services have substantial
The scope of a forest-based bioeconomy (2)

Consumption per capita of forest-biomass-based products and GDP growth in Europe
(Data: FAOSTAT, World Bank, here Sec. 3.9: Jonsson, Hurmekoski, Hetemäki, Prestemon)
The scope of a forest-based bioeconomy (3)

Possible end uses of new wood-based products (Cowie et al, 2014; Pöyry, 2016; here Sec. 3.9: Jonsson, Hurmekoski, Hetemäki, Prestemon)

- Medical, environmental, and industrial sensors
- Water and air filtration
- Cosmetics
- Organic LEDs
- Flexible electronics
- Photovoltaics
- Recyclable electronics
- Battery membranes

- Textiles
- Biofuels (crude oil, diesel, ethanol, jet fuel)
- Construction elements
- Cement additives or reinforcement fibers
- Automotive body & interior
- Packaging & paper coatings
- Paper & packaging filler
- Plastic packaging
- Intelligent packaging
- Hygiene and absorbent products

www.efi.int
The scope of a forest-based bioeconomy (4)

Non-Wood-Forest-Products

• Estimated value €2.2 billion, representing around 10% of the value of round wood (Forest Europe, 2015)
• New research indicates significantly higher economic importance in Europe
Cultural ecosystem services (Sec 3.5: Tyrväinen, Plieninger, Sanesi)

- Nature based tourism, recreation & health
- Education
- Spiritual values
Conclusions and recommendations

- Economic activities relating to forests are diverse and diversifying.
- Define the forest-based bioeconomy as encompassing economic activities relating to the entire spectrum of forest ecosystem services.
II.2 Regional diversity

Key findings
The forest based bioeconomy is regionally diverse

- **Biophysical** conditions
- **Socio-economic factors & institutional setting**
Average harvesting intensity (a; %) and harvested timber volumes (b; m³/ha) for the period 2000–2010 (Source: Levers et al, 2014, here Sec 3.1: Kraxner, Fuss, Verkerk)
Level of restrictions in private forest management identified across Europe (calculated based on 37 indicators assessing owner’s rights (Nichiforel et al, forthcoming, here Sec 3.8: Weiss, Lawrence, Nichiforel)
Conclusions and recommendations

- Multi-level approach: European framework and regional profiles
- Consider transnational “bioeconomic regions”
II.3 Sustainability

[Image of the 17 Sustainable Development Goals]

[Diagram showing the pillars of Sustainability: Social, Environmental, Economic]
Sustainability – environmental dimension

- **Climate change mitigation:** forests and wood products sequester ca. 13% of the anthropogenic greenhouse gas emissions in the EU (Sec. 3.3: Lindner, Hanewinkel, Nabuurs)

- **Biodiversity:** significant trade-offs relating to intense forest biomass production, but also significant potentials to better use existing synergies (Sec. 3.2: Bauhus, Kouki, Paillet, Asbeck, Marchetti)
Sustainability – environmental dimension (2)

Biodiversity smart forestry (Sec 3.2: Bauhus, Kouki, Paillet, Asbeck, Marchetti)

- Science based landscape approach with retention
- Intensification where biodiversity impacts are minimal or positive
 - Diversified forest bioeconomy creates synergies
Sustainability – social dimension

Example: employment

- Very little information available
- Significant enlarged employment portfolio: green jobs
- Liberalisation, diversification, automatization, digitalization

Change in reported **totals employed in the forest sector** in Europe. (Source: Original analysis based on UNECE Statistical Database >> [Forestry (FOREST EUROPE/UNECE/FAO)](http://www.forest.europe.int) >> [Socio-Economic Functions](http://www.forest.europe.int) [accessed October 2016], here Sec. 3.7: Lawrence, Spinelli, Toppinen, Salo)
Sustainability – economic dimension

Competitiveness

• European based forest companies still amongst the leading globally, but strong pressure relating to costs and innovations

→ Sustainability as a long term asset for European companies

EBITDA margin by region (%) and **reinvestment ratio (US $ billions)** (data from PWC, 2016, here Sec 3.6: Toppinen, Korhonen, Hurmekoski, Hansen).
Conclusions and recommendations

- Forest based bioeconomy – **sustainability promise**, but not sustainable per se – need to **invest in sustainability**!
- Policy needs to create a level playing field: **internalize social and environmental sustainability** (standards and economic instruments) (see also Sec 3.4: Olsson, Asikainen, Junginger)
- Explore **synergies**
- **Monitor** sustainability (Sec 4: Wolfslehner, Linser, Pülzl, Bastrup-Birk, Camia, Marchetti; advised by: Wolf-Crowther)
- Form **cross-sectoral alliances**
- Explore **new sustainability markets**
Key findings

- Human agency is in the center of the forest-based bioeconomy
- Changing lifestyles, attitudes and perceptions impact the entire value chain
Conclusions and recommendations

- An (societally) inclusive forest-based bioeconomy is imperative in Europe
- Sustainability and bioeconomy diversification are key to access urban milleus

Bioeconomy evolution (cf. Bugge et al., 2016)
Thank you!

Filip Aggestam, European Forest Institute, Germany; Bas Arts, Wageningen University, The Netherlands; Thomas Asbeck, University of Freiburg, Germany; Antti Asikainen, Natural Resources Institute Finland; Annemarie Bastrup-Birk, European Environment Agency, Denmark; Jürgen Bauhus, University of Freiburg, Germany; Vilis Brukas, Swedish University of Agricultural Sciences (SLU), Sweden; Andrea Camia, Joint Research Centre, European Commission, Italy; Sabine Fuss, Mercator Research Institute on Global Commons and Climate Change, Germany; Alexandru Gierca, University of Freiburg, Germany; Marc Hanewinkel, University of Freiburg, Germany; Eric Hansen, Oregon State University, USA; Lauri Hetemäki, European Forest Institute, Finland; Elias Hurmekoski, European Forest Institute, Finland; Ragnar Jonsson, Joint Research Centre, European Commission, Italy; Martin Junginger, Utrecht University, The Netherlands; Daniela Kleinschmit, University of Freiburg, Germany; Jaana Korhonen, University of Helsinki, Finland; Jari Kouki, University of Eastern Finland; Florian Kraxner, International Institute for Applied Systems Analysis (IIASA), Austria; Anna Lawrence, University of the Highlands and Islands, UK; Marcus Lindner, European Forest Institute, Germany; Stefanie Linser, University of Natural Resources and Life Sciences Vienna (BOKU) and Central-East and South-East European Regional Office of the European Forest Institute (EFICEEC-EFISEE), Austria; Marko Lovrić, European Forest Institute, Finland; Marco Marchetti, University of Molise, Italy; Irmeli Mustalahti, University of Eastern Finland; Gert-Jan Nabuurs, Wageningen University, The Netherlands; Liviu Nichifor, University of Suceava, Romania; Olle Olsson, Stockholm Environment Institute, Sweden; Yoan Paillet, National Research Institute of Science and Technology for Environment and Agriculture (IRSTEA), France; Davide Pettenella, University of Padova, Italy; Tobias Plieninger, University of Copenhagen, Denmark; Jeffrey Prestemon, USDA Forest Service, USA; Irina Prokofieva, Forest Sciences Center of Catalonia, Spain; Helga Pützl, University of Natural Resources and Life Sciences Vienna (BOKU) and Central-East and South-East European Regional Office of the European Forest Institute (EFICEEC-EFISEE), Austria; Eftimiya Salo, University of Jyväskylä, Finland; Giovanni Sanesi, University of Bari Aldo Moro, Italy; Laura Secco, University of Padova, Italy; Arnaud Sergent, National Research Institute of Science and Technology for Environment and Agriculture (IRSTEA), France; Metodi Sotirov, University of Freiburg, Germany; Raffaele Spinelli, National Research Council of Italy – Trees and Timber Institute (CNR IVALSA), Italy; Anne Toppinen, University of Helsinki, Finland; Liisa Tyrväinen, Natural Resources Institute Finland; Pieter Johannes Verkerk, European Forest Institute, Finland; Gerhard Weiß, University of Natural Resources and Life Sciences Vienna (BOKU) and Central-East and South-East European Regional Office of the European Forest Institute (EFICEEC-EFISEE), Austria; Georg Winkel, European Forest Institute, Germany; Bernhard Wolfslehner, University of Natural Resources and Life Sciences Vienna (BOKU) and Central-East and South-East European Regional Office of the European Forest Institute (EFICEEC-EFISEE), Austria; Jenny Wong, Wild Resources Ltd.