Resilient landscapes to face catastrophic forest fires: global insights towards a new paradigm Socioeconomic perspectives and world experiences to manage and mitigate forest fire risks

Wildfire Management in Catalonia: A proposal towards a long-term comprehensive strategy

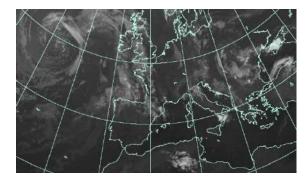
Universitat de Lleida

Fermín J. Alcasena, Marcos Rodrigues & Cristina Vega-Garcia, <u>cvega@eagrof.udl.es</u>

Forest Planning and Landscape Analysis Lab University of Lleida

With support from:

The Mediterranean wildfire problem


In southern EU some 48.600 fires burn annually about 447.800 ha; BA is declining, extreme events are stable in number but expected to increase

Extreme events (< 5% in number) currently pose a real threat to humans, property and natural values (> 90% of burned area), with major drivers being:

Fuel buildup in cultural landscapes

- A high incidence of human ignitions
- A widely enforced fire exclusion policy
- A growing wildland-urban interface (WUI)

An extreme behavior resistant to suppression efforts

Climate uncertainty linked to dry spells, heat waves and synoptic situations: i.e. northern advection of very hot and very dry air

A long-term solution?

We need a new long-term wildfire management comprehensive strategy to better coexist with fire, beyond suppression and ignition prevention

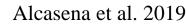
http://wwwx.inia.es/fototeca/index.jsp

Objective: "to provide a wildfire risk management-oriented framework for Mediterranean multi-functional cultural landscapes while developing a crossscale fuels reduction strategy to mitigate the negative impacts from large wildfire events and better coexist with fire"

A long-term solution

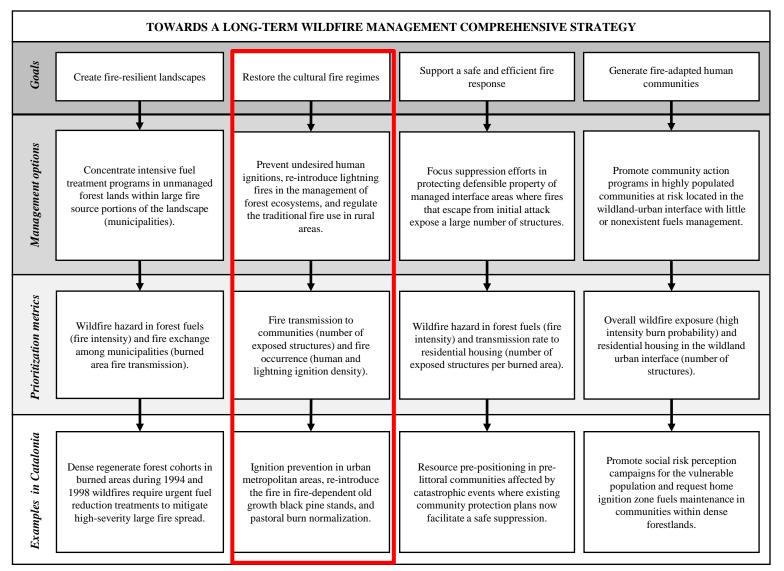
We present a general framework for a wildfire management comprehensive strategy proposed for the southern European fire-prone regions:

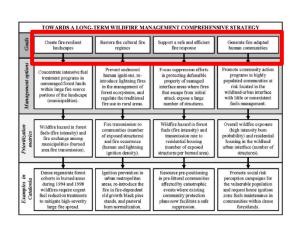
We identified four major objectives and the corresponding most feasible management options


Wildfire <u>occurrence</u>, <u>hazard</u>, <u>exposure</u>, and large fire <u>transmission metrics</u> were used to rank priorities in the different management options

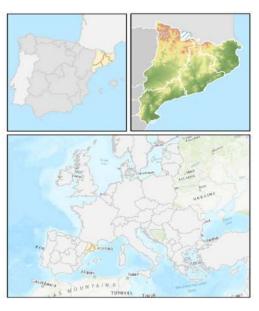
To illustrate the potential applicability of the framework we present some examples for its implementation in Catalonia (northeastern Spain) at the municipality level

More assuming the many interfaced latence is a decrete constrained of the regime in More transmission in the second second second frame regime and structures are provided by the regime in the decrete second second second second second second second ten ($P_{\rm effect}$ is et. a $P_{\rm effect}$ is an $P_{\rm effect}$ in the decrete second s (a) (10) considers and Markov 2000 the Markov proc of (15) (35). Controlly, more design from the superscale of the set mergers with the set of the set of


¹⁷Comparing unline 2 and Jahrs Communication graph of the (F/L Marson) 2 months and the systematic field (Marson) 2 months (C.2) Annual field (Marson) (A second field (Marson)) 2 months (C.2) Marson (Marson) (Marson) (Marson) 2 months (C.2) Marson (Marson) (Marson) 2 months (C.2) Marson (Marson) (Marson) 2 months (C.2) Marson (Marson) 2 months (C.2) Marson (Marson) 2 months (C.2) Marson (Marson) 2 months (Marson) 2


A significant difference with the National Cohesive Strategy- USFS 2015

USDA Forest Service, 2014. The National Strategy: The final phase in the development of the National Cohesive Wildland Fire Management Strategy. 93.


We combine historical ignition data, outputs from simulation modeling, land use patterns and valued assets to map these specific fire and fuel management goals in Catalonia, NE Spain

With support from

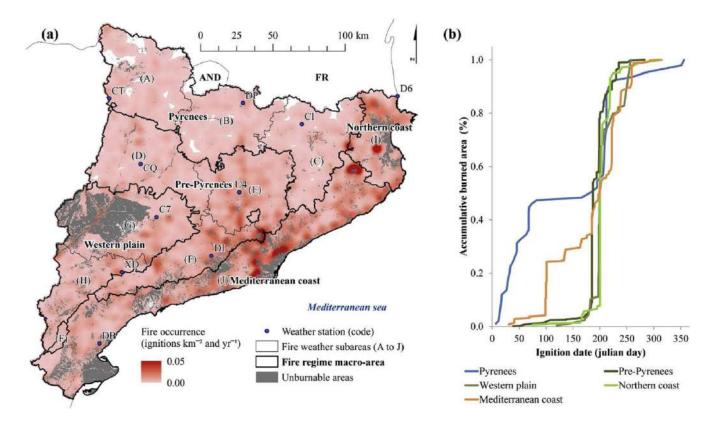
23

EFI

Catalonia is one of the largest fire-prone areas in the Mediterranean basin and encompasses a wide variety of landscapes, fuel types, WUI, physiographic gradients, climates, and fire ignition patterns

Approx. 2 mill ha forests

On average some 650 fires burn about 11.5 thousand ha yr–1 A low number (< 2%) of large fires (> 100 ha) account for 88% of the BA A few extreme events (> 1.000 ha fire of 1986, 1994, 1998, 2003 and 2012) concentrate the bulk (> 65%) of the burned area. Most fire ignitions (> 90%) are caused by humans (1983–2014)

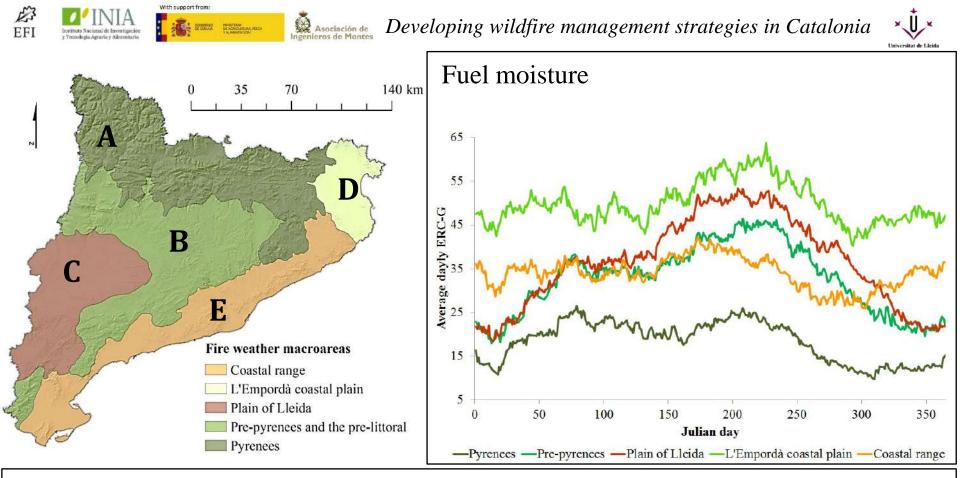


Spatial extent (a) and historic fire activity (b) for the major fire regime macroareas in Catalonia: Regime Regions

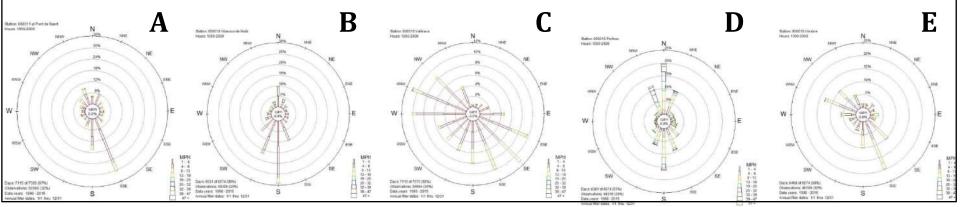
With support from

EFI

A fire occurrence grid (a) was generated with kernel geostatistical methods using historical ignition locations (human and lightning) from 1998 to 2014. The fire regime macro-areas were further divided into 10 fire-weather subareas to consider the changing conditions on local wind scenarios



Fire historical data:


Used to determine the wildfire season <u>duration</u> (90% BA in fires > 100ha) for extreme <u>fire-weather scenarios</u> (97th percentile winds and fuel moisture content), from automatic weather station data

Wildfire history on the main fire regime macro-areas of Catalonia (northeastern Spain; Fig. 2a). We considered a 100 ha large fire threshold to calculate the large fire frequency and define the wildfire season from the historical fire activity chart (Fig. 2b). The mean annual burn probability in Catalonia is 0.0036.

Fire regime macro-area	Wildfire season	Area (ha)	Large fire number (per 10^6 ha and yr ⁻¹)	Burned area (ha yr ⁻¹)	Mean annual burn probability
Pyrenees	Jan 7 to March 9, and July 13 to October 12	881,035	1.5	488	0.0006
Pre-Pyrenees	Jun 26 to August 27	837,776	5.1	5,234	0.0062
Western plain	July 10 to September 13	418,626	2.8	1,261	0.0030
Northern coast	Jun 18 to August 11	157,226	7.8	1,911	0.0122
Mediterranean coast	April 8 to September 10	531,950	5.6	2,604	0.0049

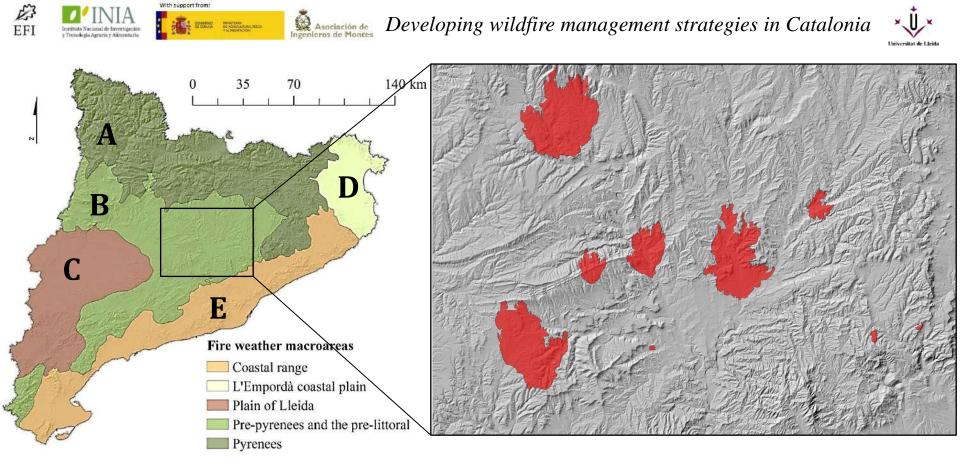
Wind speed and direction

Fire historical data + fire spread modeling:

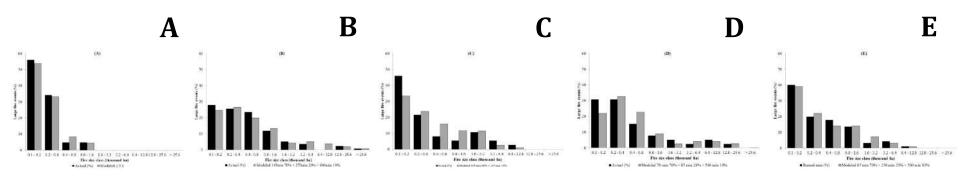
With support from

23

EFI


We used large fire size distributions for calibration of the fire spread model (160,000 fires >100 ha, burning BA in 10,000 fire seasons)

We used the FConstMTT command line version of FlamMap to model wildfire spread and behavior with the MTT algorithm*. Fire modeling outputs for Catalonia at 150 m resolution: burn probability, fire intensity-flame length probability, fire size, flow paths, crown fire activity, fire perimeters...

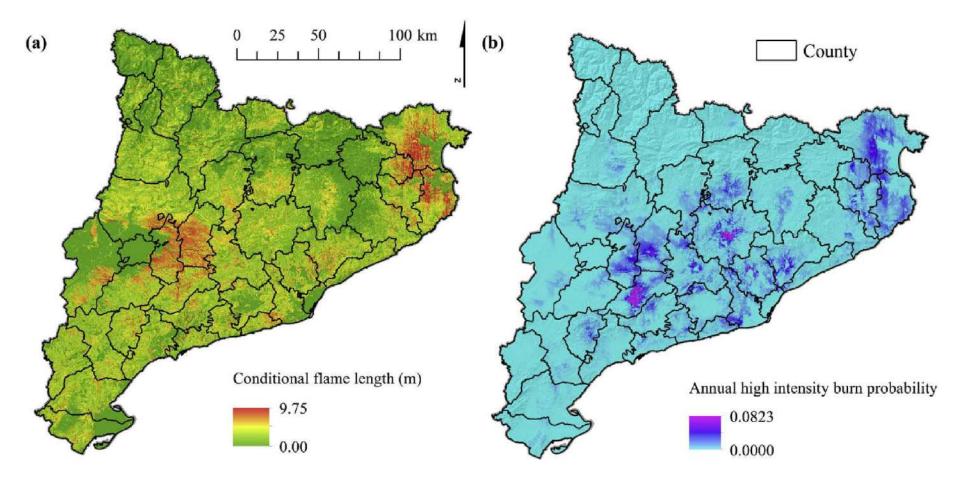

Fire historical data + fire spread modeling + valued assets:

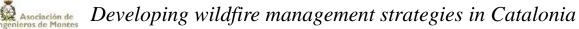
Fire modeling outputs plus valued assets geolocations allowed assessment of wildfire <u>hazard</u> (conditional flame length), overall <u>exposure</u> (high-intensity burn probability) and large fire <u>transmission</u> (flow paths and perimeters from ignition location to township or structures)

* Finney, M.A., 2006. An overview of FlamMap fire modeling capabilities. In: Andrews, P.L., Butler, B.W. (Eds.), Fuels Management-how to Measure Success. Proceedings RMRS-p-41. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, pp. 213–220.

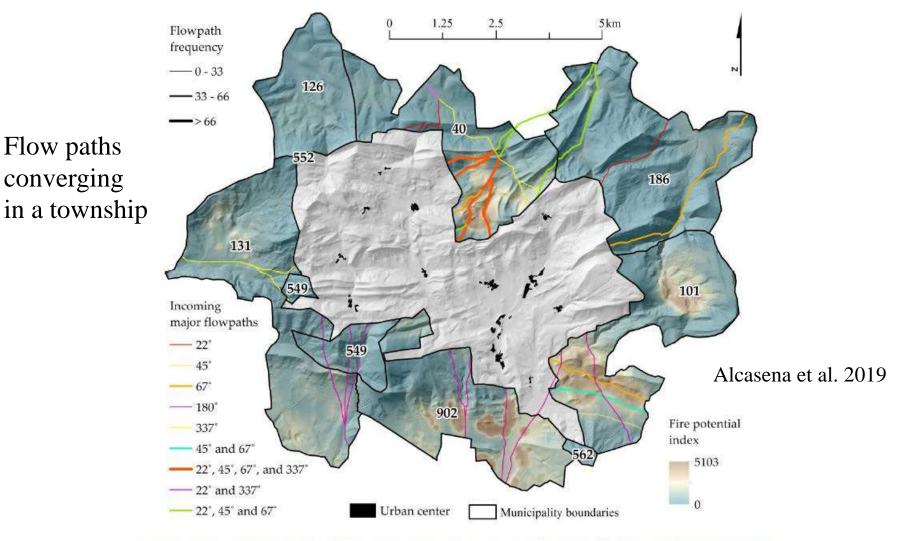
Replicate historic fire size distributions in the different macro-areas

Developing wildfire management strategies in Catalonia Asociación de ngenieros de Montes


Fire modeling outputs for Catalonia


With support from:

题


B

EFI

With support from:

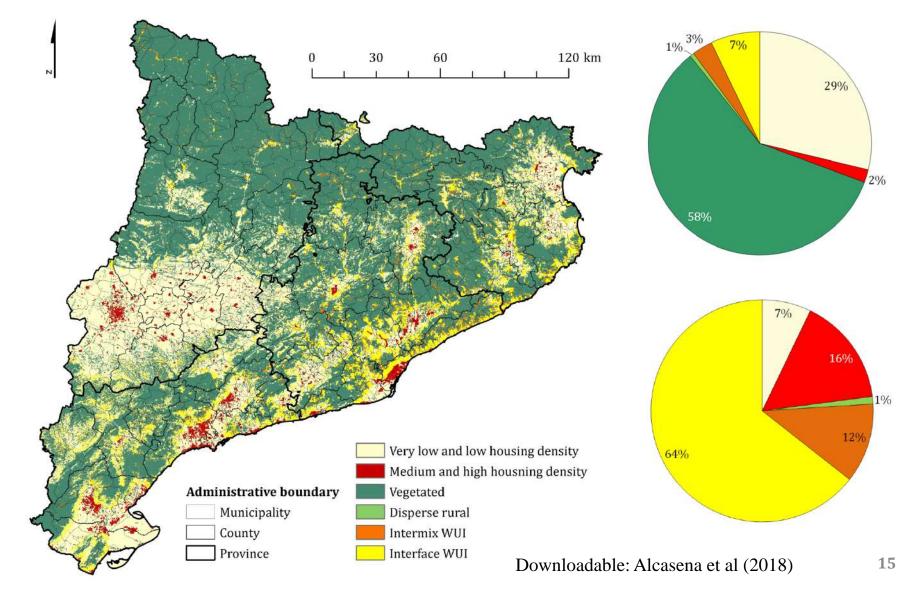
E3

EFI

Figure 5. Fire potential index (FPI) and incoming major flow-paths from the surrounding municipalities. FPI was calculated by combining the fire size and ignition probability output grids, and was used to identify the areas where the ignition of a large fire is more likely [31]. Major flow-paths were obtained with the minimum travel time algorithm (MTT) [62] considering the five most recurrent fire weather scenarios (Table 2). The flow-path thickness indicates frequency and color indicates fire scenarios.

Fire historical data + fire spread modeling + valued assets + land cover

Housing structure density Fuel types on the HIZ (lidar) A 0.15 0.3 0.6 km Land cover polygons Industrial Housing units

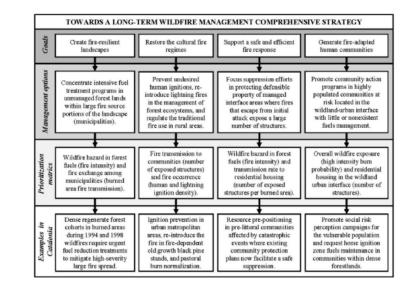


Wildland-Urban Interface in Catalonia

With support from:

E

EFI



Fire historical data + fire spread modeling + valued assets + land cover = metrics = Priority Maps

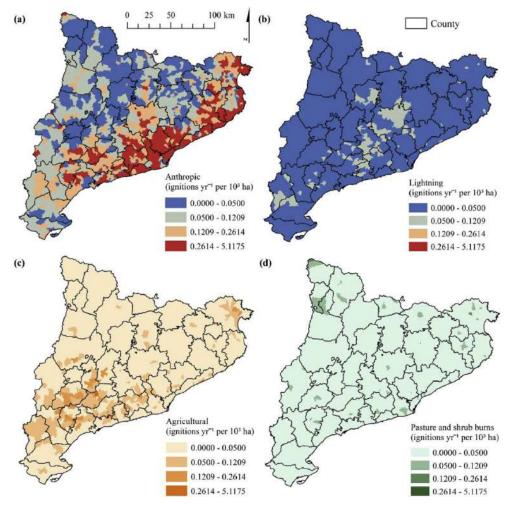
With support from:

EFI

Tecnologia Agraria y Alimenta

Assignment of metric pairs (i.e, fire occurrence, hazard, exposure, and transmission results) to the different objectives of the wildfire management strategy (Fig. 1). These metrics were cross-tabulated to obtain 4 priority classes (Table 2). The final results were presented at the municipality level (n = 948) in a set of spatial priority maps.

Goal	Management options	Prioritization metrics	Priority map
Create fire resilient landscapes	Fuel treatments	We used fire transmission (T_OUT quartiles; Fig. 5a) and wildfire hazard (CFL levels; Fig. 4a) to assess the priority classes. The classes were ranked from the highest transmission and hazard values to the lowest. Protected areas (Appendix B) were overlaid on the map to delineate areas with potential treatment constraints.	Fig. 7
Restore the cultural fire regime	Human ignition prevention	Annual anthropic fire ignition density (ANT quartiles; Fig. 3a) and transmission to residential houses (T_RES quartiles; Fig. 6a) were used to assess the priority classes. The classes were ranked from the highest ignition density and transmission to the lowest.	Fig. 8
	Natural fire re- introduction	Lightning ignition density (NAT quartiles; Fig. 5b) and transmission to residential houses (T_RES quartiles; Fig. 6a) were used to assess the classes. The classes were ranked from the highest lightning fire ignition densities to the lowest and from the lowest transmission values to the highest.	Fig. 9
Support a safe and efficient response	Fire suppression	Fire transmission rates to residential houses (TR_RES; Fig. 6c) and wildfire hazard (CFL levels; Fig. 4a) was used to set the classes. The classes were ranked from the highest transmission rates to the lowest and from the lowest hazard levels to the highest.	Fig. 10
Generate fire-adapted communities	Community action	High overall exposure levels (annual HIBP quartiles;Fig. 4b) and number of residential houses on the wildland-urban interface (Alcasena et al., 2018a) were used to set the classes. The classes were ranked from the highest exposure values and the highest number of structures to the lowest.	Fig. 11


Wildfire Management Metrics

With support from

EFI

Management options:

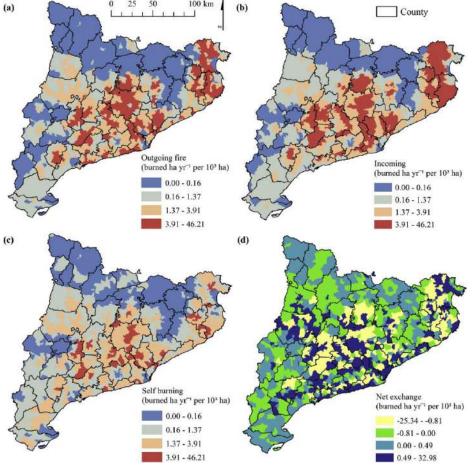
Human ignition prevention Natural fire reintroduction

Municipality level anthropic (a) and lightning (a) fire ignition densities in Catalonia for the period 1983–

2014. The boundaries delineate the County level

administrative division. We considered the anthropic ignition density quartile value intervals to set the classes. The cultural fire use is mainly associated to agricultural waste and edge cleaning (c), and pasture or shrub clearing (d).

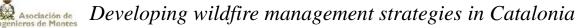
Developing wildfire management strategies in Catalonia Asociación de eros de Montes


Wildfire Management **Metrics**

With support from

EFI

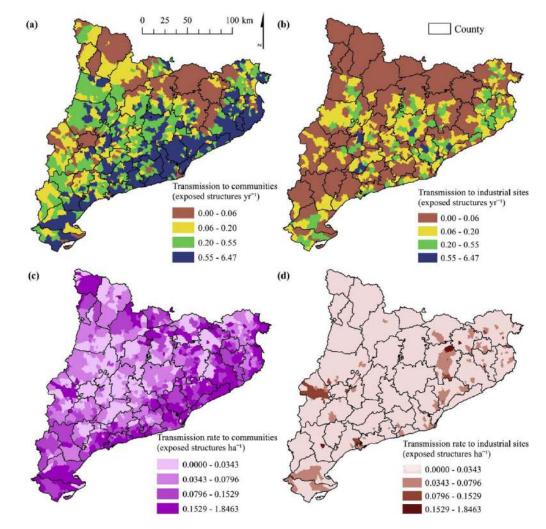
Management options:


Human ignition prevention Fuel treatment Fire suppression

Fire <u>exchange</u> across Catalonia at the municipality level (n=948) in terms of incoming (T_IN; a), outgoing (T_OUT; b), self-burning (SB; b) and net exchange

(Net exchange=T_OUT – T IN; d) in terms of burned ha yr–1 per a normalized municipality area of 103 ha. On average wildfires in Catalonia burn about 11.5

thousand ha yr-1 (n=650 fires yr-1; 1983 to 2014), from which the 37% of the burned area came from fires initiated on the neighboring municipalities 18


Wildfire Management Metrics

With support from

EFI

Management options:

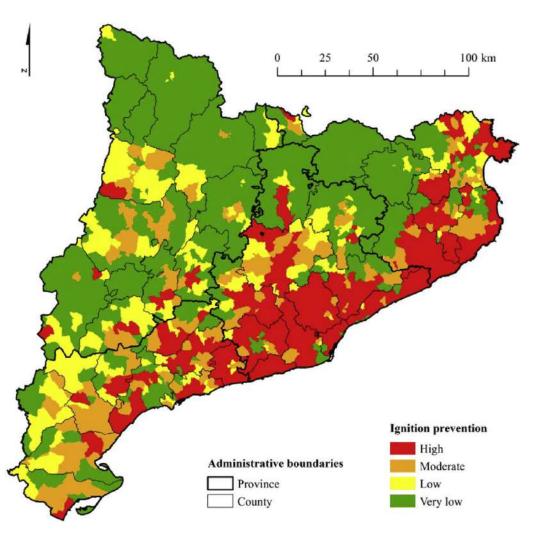
Human ignition prevention Fuel treatment Fire suppression

Annual fire <u>transmission and transmission rate</u> per burned area (ha) for structures in communities (a and c) and industrial sites (b and d) at the municipality

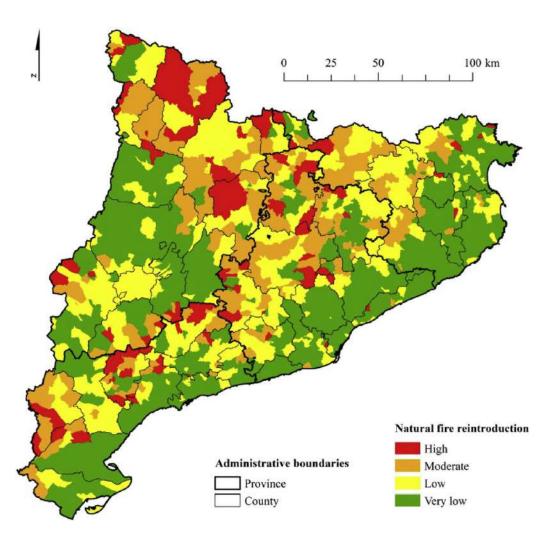
level. The analysis was conducted intersecting modeling output large fire perimeters (> 100 ha) with structure centroid locations

Developing wildfire management strategies in Catalonia

Wildfire Management Priority maps


Spatial prioritization for <u>fuel</u> <u>reduction</u> programs in Catalonia, from crosstabulated wildfire hazard on forest fuels (CFL levels) and burned area transmission (outgoing). The highest priorities are located on central and northeastern portions of Catalonia

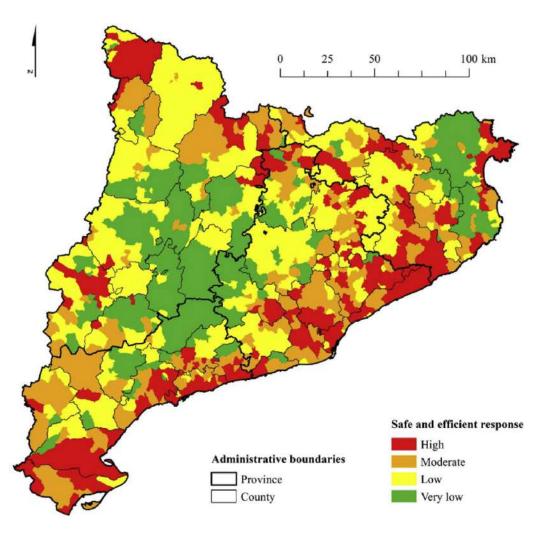
Spatial prioritization for <u>human ignition prevention in</u> Catalonia. From cross tabulated anthropic fire ignition densities and transmission to residential houses. Coastal and metropolitan areas of Barcelona showed the highest priority



Spatial prioritization for natural fire reintroduction in forest ecosystems from cross tabulated lightning fire ignition densities and transmission to residential houses. The municipalities with a highest potential located on remote mountainous areas were lightning fire reintroduction would not pose a risk to communities

With support from

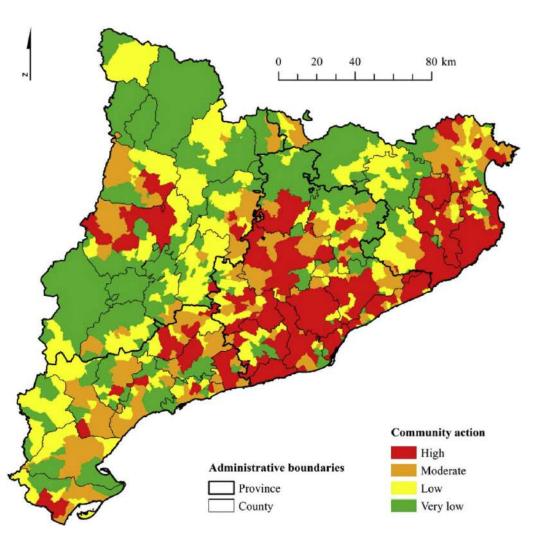
EFI



With support from

EFI

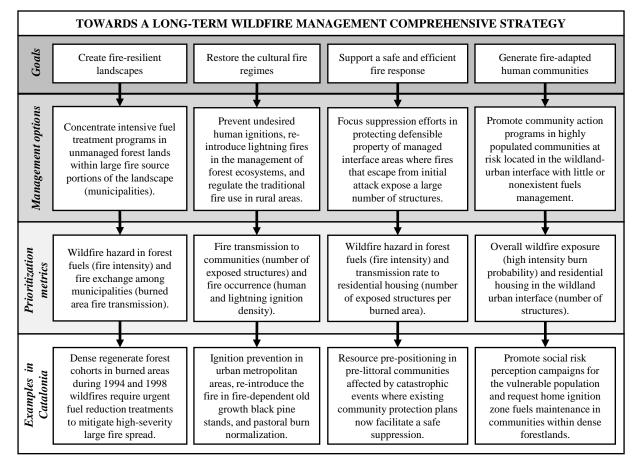
Spatial prioritization for a safe and efficient response in Catalonia from crosstabulated wildfire hazard (CFL levels) and transmission rate to communities, candidates for an aggressive full suppression policy. Wildland-urban interface areas surrounded by managed fuels, predominantly agricultural plains and narrow valleys of the Pyrenees presented the highest priority

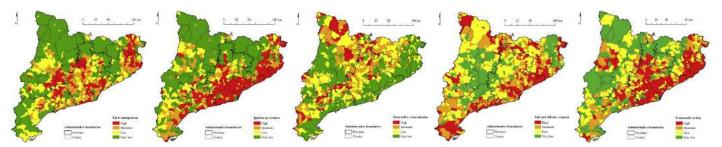


With support from

EFI

Spatial prioritization for community action program implementation in Catalonia from crosstabulated wildfire exposure values on the home ignition zone (annual HIBP quartiles) and the number dwellings on the WUI. The top priorities are located on populated littoral and pre-littoral areas of Barcelona and Girona





So once we have these priorities, how to implement management action?

With support from

EFI

Higher resolution is needed: Community action

Avg. HIBP for the top-25 municipalities in Catalonia by WUI class: <u>structure level</u>

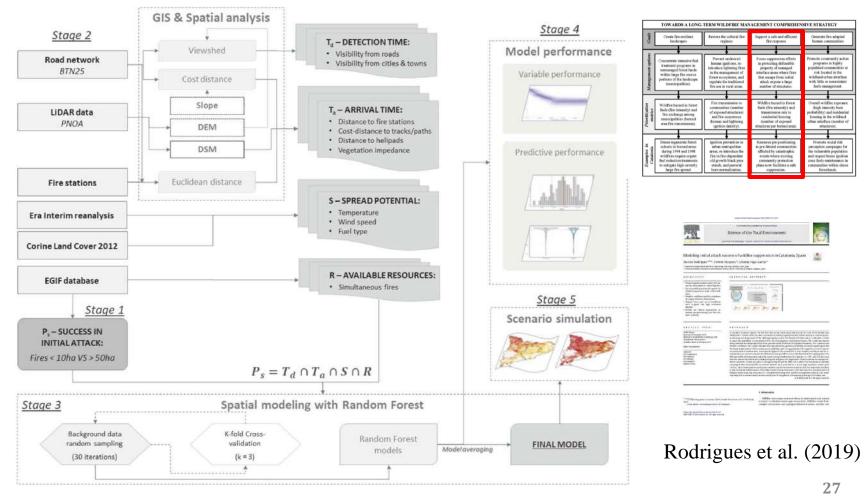
With support from

EFI

Goals	Create fire-resilient landscapes	Restore the cultural fire regimes	Support a safe and efficient fire response	Generate fire-adapted human communities
fanagoment options	Concentrate intensive fuel treatment programs in ummanaged forest lands within large fire source portions of the landscape (municipalities).	Prevent undesired human ignitions, re- introduce lightning fires in the management of forest ecosystems, and regulate the traditional fre use in rural areas.	Focus suppression efforts in protecting definition property of managed interface areas where fires that escape from initial attack expose a large number of structures.	Promote community action programs in highly populated communities at risk located in the wildland-urban interface with little or nonexistent fuels management.
metrics	Wildfire hazard in forest fuels (fire intensity) and fire exchange among municipalities (burned area fire transmission).	Fire transmission to communities (number of exposed structures) and fire occurrence (human and lightning ignition density).	Wildfire hazard in forest fucle (fire intensity) and transmission rate to residential housing (number of exposed structures per burned area).	Overall wildfire exposure (high intensity burn probability) and residential housing in the wildfand urban interfisce (number of structures).
Catalonia	Dense regenerate forest cohorts in burned areas during 1994 and 1998 wildfires require urgent fael reduction treatments to mitigate high-severity large fire spread.	Ignition prevention in urban metropolitan arcas, re-introduce the fire in fire-dependent old growth black pine stands, and pastoral burn scennalization.	Resource pre-positioning in pre-littoral communities affected by catastrophic events where existing community protection plus now facilitate a safe suppression.	Promote social risk perception campaigns for the vulnerable population and request heme ignition zone fuels maintenance in commanifies within dense forestlands.

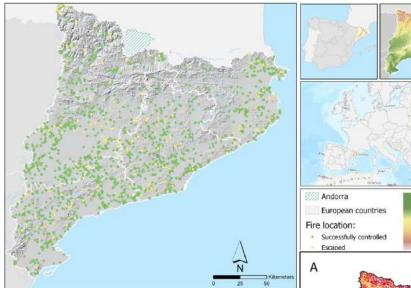
Municipality	Province			WUI	l class				Total
		Disper	se rural	Inte	ermix	Interface			
		structures	avg. aHIBP						
Rubí	Barcelona	1	0.0004	410	0.0053	3089	0.0044	3500	0.0046
Lliçà d'Amunt	Barcelona	1	0.0009	272	0.0040	2612	0.0055	2885	0.0051
Terrasa	Barcelona	7	0.0047	409	0.0090	2056	0.0113	2472	0.0106
Calonge	Girona	8	0.0047	469	0.0047	1944	0.0089	2421	0.0074
Mançanet de la Selva	Gerona	14	0.0008	415	0.0034	1992	0.0061	2421	0.0051
Begur	Gerona	4	0.0054	269	0.0050	1935	0.0050	2208	0.0050
Girona	Gerona	12	0.0081	322	0.0084	1833	0.0073	2167	0.0076
Cervelló	Barcelona	5	0.0031	170	0.0036	1957	0.0057	2132	0.0052
Palafrugell	Gerona	7	0.0068	261	0.0068	1855	0.0093	2123	0.0087
Santa Cristina d'Aro	Gerona	23	0.0050	359	0.0087	1682	0.0085	2064	0.0084
Caldes de Montbui	Barcelona	12	0.0022	316	0.0047	1507	0.0108	1835	0.0088
Santa Eulàlia de Ronçana	Barcelona	1	0.0047	158	0.0047	1653	0.0067	1812	0.0063
Castell-Platja d'Aro	Gerona	5	0.0084	385	0.0067	1316	0.0077	1706	0.0073
l'Amatlla del Vallès	Barcelona	1	0.0134	210	0.0055	1396	0.0065	1607	0.0062
Pals	Gerona	6	0.0079	187	0.0080	1335	0.0099	1528	0.0095
Castellbisbal	Barcelona	9	0.0029	172	0.0057	1335	0.0057	1516	0.0056
Esparreguera	Barcelona	5	0.0108	132	0.0081	1357	0.0071	1494	0.0075
Llagostera	Gerona	18	0.0028	194	0.0041	1280	0.0079	1492	0.0070
Palau-solità i Plegamans	Barcelona	0	0.0000	69	0.0051	1294	0.0073	1363	0.0071
Vilanova del Vallès	Barcelona	2	0.0065	208	0.0055	1067	0.0082	1277	0.0074
Sentmenat	Barcelona	8	0.0034	209	0.0036	984	0.0097	1201	0.0080
Olesa de Montserrat	Barcelona	6	0.0065	141	0.0065	1021	0.0072	1168	0.0070
Montcada i Reixac	Barcelona	2	0.0049	283	0.0071	878	0.0092	1163	0.0085
Sant Vicenç dels Horts	Barcelona	0	0.0000	194	0.0051	957	0.0045	1151	0.0047
la Roca del Vallès	Barcelona	7	0.0104	159	0.0037	962	0.0098	1128	0.0083

Higher resolution is needed: Safe and efficient wildfire response


With support from:

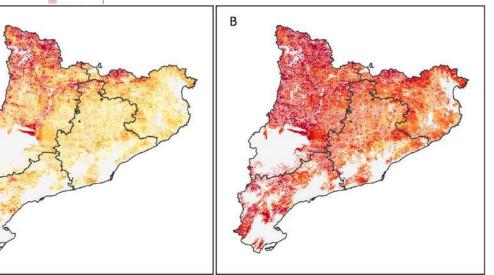
23

EFI


l'ecnolegia Agraria y Alim

A general workflow for modeling and mapping the probability of success in initial attack in Catalonia: <u>best if we contain fires early</u>

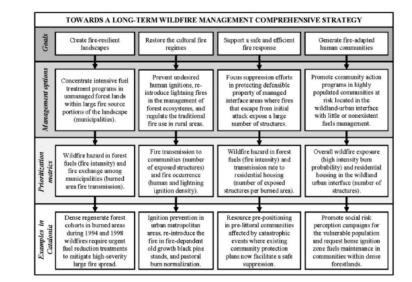
Higher resolution is needed: Safe and efficient wildfire response Controlled/escaped fires at initial attack in Catalonia


With support from

EFI

Successfully suppressed vs Escaped fires (1998–2015)

Spatial distribution of predicted
probability of success (RF) in IA
A) 'Business as usual' scenario:
temperature and wind speed at the 50th
percentile, no simultaneous fires
B) 'Worst case' scenario, temperature and
wind speed at 90th percentile, and 10
simultaneous fires


Placing the focus back on Resilient Landscapes

With support from:

EFI

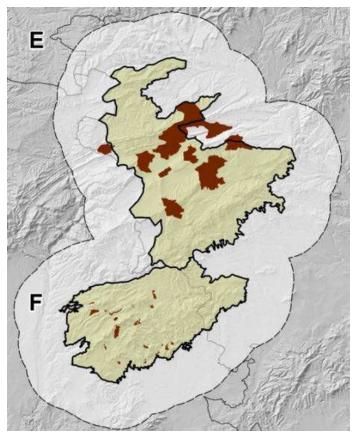
Tecnologia Agraria y Aliment

Fire historical data + fire spread modeling + valued assets + land cover = Priority maps

Assignment of metric pairs (i.e, fire occurrence, hazard, exposure, and transmission results) to the different objectives of the wildfire management strategy (Fig. 1). These metrics were cross-tabulated to obtain 4 priority classes (Table 2). The final results were presented at the municipality level (n = 948) in a set of spatial priority maps.

Goal	Management options	Prioritization metrics	Priority map
Create fire resilient landscapes	Fuel treatments	We used fire transmission (T_OUT quartiles; Fig. 5a) and wildfire hazard (CFL levels; Fig. 4a) to assess the priority classes. The classes were ranked from the highest transmission and hazard values to the lowest. Protected areas (Appendix B) were overlaid on the map to delineate areas with potential treatment constraints.	Fig. 7
Restore the cultural fire regime	Human ignition prevention	Annual anthropic fire ignition density (ANT quartiles; Fig. 3a) and transmission to residential houses (T_RES quartiles; Fig. 6a) were used to assess the priority classes. The classes were ranked from the highest ignition density and transmission to the lowest.	Fig. 8
	Natural fire re- introduction	Lightning ignition density (NAT quartiles; Fig. 5b) and transmission to residential houses (T_RES quartiles; Fig. 6a) were used to assess the classes. The classes were ranked from the highest lightning fire ignition densities to the lowest and from the lowest transmission values to the highest.	Fig. 9
Support a safe and efficient response	Fire suppression	Fire transmission rates to residential houses (TR_RES; Fig. 6c) and wildfire hazard (CFL levels; Fig. 4a) was used to set the classes. The classes were ranked from the highest transmission rates to the lowest and from the lowest hazard levels to the highest.	Fig. 10
Generate fire-adapted communities	Community action	High overall exposure levels (annual HIBP quartiles;Fig. 4b) and number of residential houses on the wildland-urban interface (Alcasena et al., 2018a) were used to set the classes. The classes were ranked from the highest exposure values and the highest number of structures to the lowest.	Fig. 11

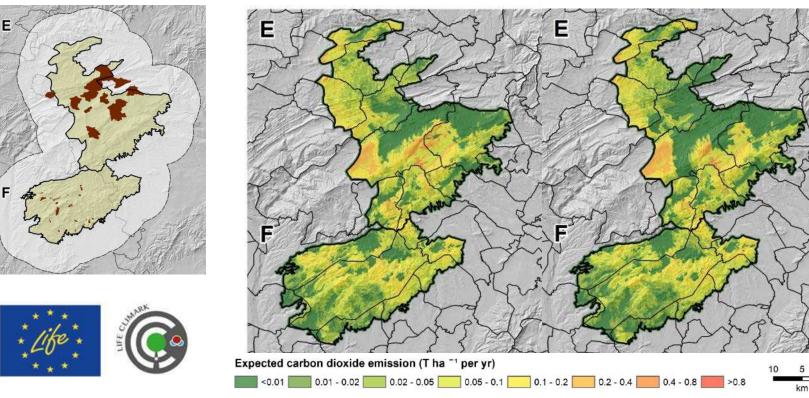
Placing the focus back on Resilient Landscapes


Current situation:

EFI

1. Increasing fuel connectivity and buildup are the main contributing factors to large fires in Spain

2. Stand replacing high severity events threaten mature forests and increase future fire hazard by promoting dense regeneration from serotinous conifer species, resprouting shrublands, and coppice stands


3. Managing <u>fuels</u> on fire-prone landscapes represents the most promising strategy capable of reversing the escalation of megafire events and restoring fire resilient ecosystems

Strategic management points GRAF-GenCat, Serres d'Ancosa

Planning fuel treatments to reduce large fire spread is a complex problem and must consider how to <u>efficiently treat landscapes</u> in terms of spatial configuration and density of treatments: how, how much and where?

https://lifeclimark.eu/en/

With support from

EFI

Technical report 11-12: Effects of fuel treatments on reducing carbon emissions in fire-prone Mediterranean landscapes. Action C5 Strategic fuels management aimed at reducing wildfire risk. 31st March 2019.

How: The use of <u>prescribed fire</u> by landscape managers to treat fuels is gaining importance in fire-prone southern European countries, in fact, until the mid-1950s in many southern EU countries fire was used systematically in rural areas for pasture and edge clearing, and agricultural waste

With support from

23

EFI

How much: Besides fuel reduction, prescribed fire can be used to restore habitats, maintain forest canopy openings, facilitate natural regeneration, clear logging debris, control pests and diseases, and improve pastures in mountain areas, but application is <u>not always</u> <u>possible</u> due to the silvicultural state of woodlands

Where: Treatment strategies must consider <u>multiple objectives</u>, which may change substantially the spatial configuration of fuel treatments, but transferable studies are scarce

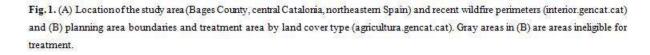
Rationale:

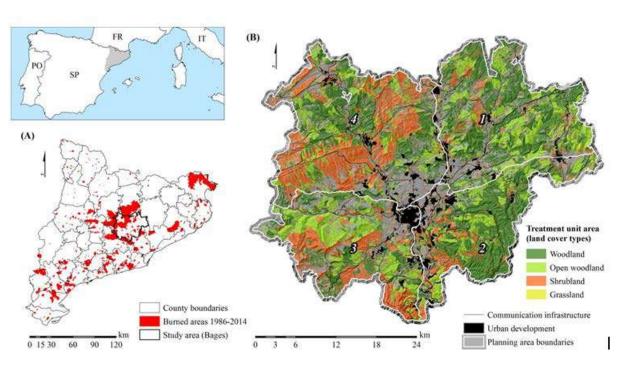
How does focusing on one fuel management objective result in trade-offs in others, and how to achieve multiple fire management objectives?

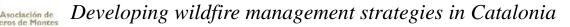
Recent studies have explored these questions using production possibility frontiers (PPFs) to graphically represent Pareto efficient optimal resource allocations for competing objectives in fuel treatment programs*

Study case: Optimizing prescribed fire allocation for managing fire risk in central Catalonia

*Ager AA, Day MA, Vogler K. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests. Journal of Environmental Management 2016b; 176: 157-168

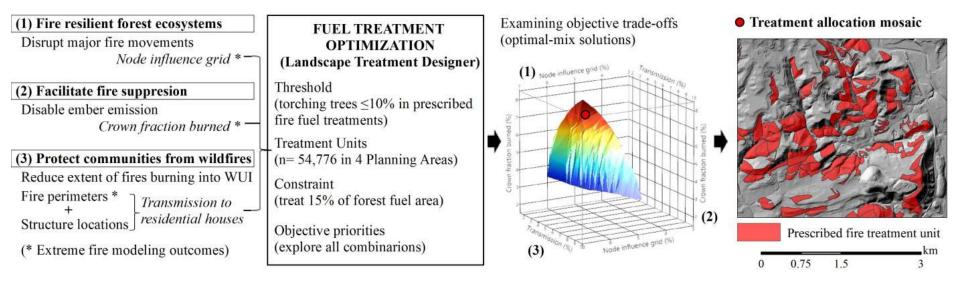

We conducted a case study that combined fire simulation and trade-off analyses to evaluate the compatibility of three prescribed fire management objectives that focused treatments to improve: 1) forest resiliency to fire, 2) effectiveness of fire suppression, and 3) protection of rural communities.


We used optimization methods to examine both trade-offs among the objectives and priorities for sample planning areas.


With support from

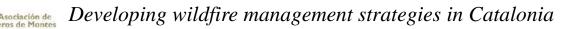
EFI

Bages County, central Catalonia (NE Spain) (Alcasena et al. 2018)



EFI Straitiute Nacional de Envertigación y Tecnalizata Admontanta Admontanta

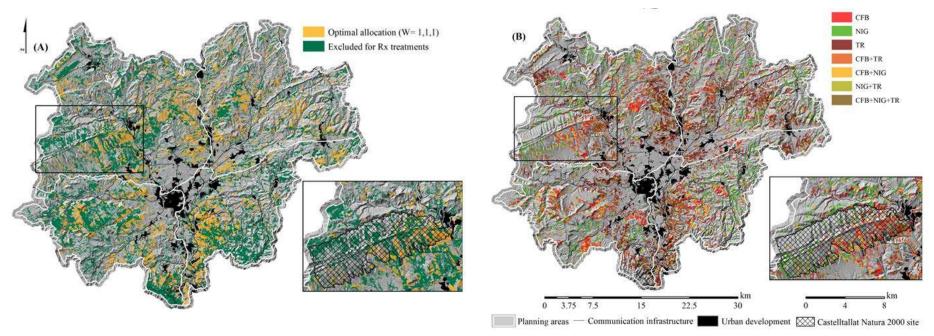
Developing wildfire management strategies in Catalonia



Graphical abstract:

1. Model fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures.

2. An optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations.



It works...but yet much spatial analysis to do

With support from

EFI

54,773 treatment polygons based on land cover with an average size of 1.67 ha

Fig. 9. (A) Optimal prescribed fire treatment locations in Bages County (central Catalonia, northeastern Spain) considering the same weights for all three metrics used to assess prescribed fire management objectives (W= 1, 1, 1; A). Implementing prescribed fire on densely regenerated young forest stands (e.g., *Pinus halepensis* cohorts with > 10³ trees ha⁻¹ on 1998 Bages fire burned areas) could cause negative effects on the overstory (average crown fraction burned > 0.1 or torching > 10%), therefore these stands were excluded from the analysis. (B) We overlaid the treatment mosaic results when each metric was optimized independently (see attainments in Fig. 7) to explore areas where optimal solutions for a single metric overlap. The close up view corresponds to the Castelltallat mountain range Natura 2000 site of special interest and Sùria rural community. Abbreviations: CFB= crown fraction burned; TR= transmission; NIG= node influence grid; Rx= prescribed fire.

Developing wildfire management strategies in Catalonia

Thank you.....Questions?

Bibliography

Alcasena FJ; AA Ager; JD Bailey; N Pineda; C Vega-García. 2019. Towards a comprehensive wildfire management strategy for Mediterranean areas: Framework development and implementation in Catalonia, Spain. Journal of Environmental Management 231:303–320; https://doi.org/10.1016/j.jenvman.2018.10.027

Alcasena, FJ; A.A. Ager; M Salis; M Day; C Vega-Garcia. 2018. Optimizing prescribed fire allocation for managing fire risk in central Catalonia. Science of the Total Environment Vol. 621:872-885 https://doi.org/10.1016/j.scitotenv.2017.11.297

Alcasena FJ; C Ever; C Vega-Garcia, 2018. The wildland-urban interface raster dataset of Catalonia. Data Br. 17, 124–128.

Alcasena FJ; M Salis; AA Ager; R Castell; C Vega-Garcia. 2017. Assessing wildland fire risk transmission to communities in Northern Spain. Forests 8, 30; doi:10.3390/f8020030

Rodrigues M; FJ Alcasena; C Vega-Garcia. 2019. Modeling initial attack success of wildfire suppression in Catalonia, Spain. Science of the Total Environment 666:915–927; https://doi.org/10.1016/j.scitotenv.2019.02.323

In Spanish:

Alcasena Urdíroz FJ; C Vega-García; AA Ager; M Salis; NJ Nauslar; FJ Mendizabal; R Castell. 2019. Metodología de evaluación del riesgo de incendios forestales y priorización de tratamientos multifuncionales en paisajes mediterráneos. Cuadernos de investigación geográfica / Geographical Research Letters 45(2):571-600.