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A B S T R A C T

This paper tested the ability of machine learning techniques, namely artificial neural networks and random
forests, to predict the individual trees within a forest most at risk of damage in storms. Models based on these
techniques were developed individually for both a small forest area containing a set of 29 permanent sample
plots that were damaged in Storm Martin in December 1999, and from a much larger set of 235 forest inventory
plots damaged in Storm Klaus in January 2009. Both data sets are within the Landes de Gascogne Forest in
Nouvelle-Aquitaine, France. The models were tested both against the data from which they were developed, and
against the data set from the other storm. For comparison with an earlier study using the same data, logistic
regression models were also developed. In addition, the ability of machine learning techniques to substitute for a
mechanistic wind damage risk model by training them with previous mechanistic model predictions was tested.

All models were accurate at identifying whether trees would be damaged or not damaged but the random
forests models were more accurate, had higher discriminatory power, and were almost totally unaffected by the
removal of any individual input variable. However, if all information relating to a stand was removed the
random forests model lost accuracy and discriminatory power. The other models were similarly affected by the
removal of all site information but none of the models were affected by removal of all tree information, sug-
gesting that damage in the Landes de Gascogne Forest occurs at stand scale and is not controlled by individual
tree characteristics. The models developed with the large comprehensive database were also accurate in iden-
tifying damaged trees when applied to the small forest data damaged in the earlier storm. However, none of the
models developed with the smaller forest data set could successfully discriminate between damaged and un-
damaged trees when applied across the whole landscape. All models were very successful in replicating the
predictions of the mechanistic wind risk model and using them as a substitute for the mechanistic model pre-
dictions of critical wind speed did not affect the damage model results.

Overall the results suggest that random forests provide a significant advantage over other statistical modelling
techniques and the random forest models were found to be more robust in their predictions if all input variables
were not available. In addition, the ability to replace the mechanistic wind damage model suggests that random
forests could provide a powerful tool for damage risk assessment over large regions and provide rapid assessment
of the impact of different management strategies or be used in the development of optimised forest management
with multiple objectives and constraints including the risk of wind damage.

1. Introduction

Wind causes more than 50% by volume of all damage to European
forests and is the major damage agent on the continent (Schelhaas
et al., 2003). On average two storms each year cause major damage in

some part of Europe, where major damage is defined as disrupting the
normal harvesting and supply of timber in a region. In south-west
France there have been two major storms in the recent past that have
threatened the viability of the forest industry in the Nouvelle-Aquitaine
region. On 27 December 1999 Storm Martin caused a loss of 26 million
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m3 of timber (equivalent to 3.5 years of normal harvest) in the north-
west of the region and on 24 January 2009 Storm Klaus caused 41
million m3 of timber loss further south. The damage was predominately
(37 million m3) to maritime pine (Pinus pinaster Ait.) and the damage
from the two storms represented 15% and 32% of the maritime pine
standing volume in the region respectively.

There are also now increasing concerns that wind damage in Europe
and many other parts of the world may increase with the changing
climate (Csilléry et al., 2017; Haarsma et al., 2013; Kunkel et al., 2013;
Lindner et al., 2010) due to the increasing intensity of low pressure
systems whether extra tropical or tropical (hurricanes and typhoons).
Therefore, in order to plan for the future there is a need for accurate
models predicting tree vulnerability to wind damage and the level of
risk. Such wind risk models form part of the risk assessment process that
is an integral part of forest management (Cucchi et al., 2005; Gardiner
and Welten, 2013; Hanewinkel et al., 2010) and allow managers and
planners to decide on choice of species, silvicultural/management ap-
proaches, and rotation lengths for forest stands as a function of the site
conditions (e.g. soil type, slope, water table depth, wind climate, etc.).

A number of modelling approaches to wind risk in forests are
available. These include mechanistic (Gardiner et al., 2008) and sta-
tistical approaches (Albrecht et al., 2010). Previous attempts to model
the observed damage patterns in the Landes de Gascogne Forest in
Nouvelle-Aquitaine, France using these two very different approaches
are described in Kamimura et al. (2016). The mechanistic approach
used the GALES model (Hale et al., 2015) and the statistical approach
was based on logistic regressions (e.g. Valinger and Fridman, 2011).
The results showed mixed success. The models were first tested on a
small forest area that had a detailed survey of tree characteristics and
damage following the Martin storm. Both models made accurate pre-
dictions of which individual trees were damaged in the storm. However,
when the models were applied across the whole forest at the regional
scale the logistic regression model performed poorly and GALES only
worked well in areas with similar soil conditions to those from previous
tree pulling tests used in the model parameterisation (Cucchi et al.,
2004).

In environmental science there has been an increased use of
Artificial Intelligence (AI) techniques in modelling studies (Chen et al.,
2008). These techniques have also been increasingly used in forestry
(e.g. Lagerquist et al., 2017) although the ideas of using AI in forestry
have already been around for a long time (Kourtz, 1990). However,
very little attention has been paid to the use of AI in modelling the risk
of wind damage with the exception of the work of Hanewinkel et al.
(2004) and Hanewinkel (2005) who investigated the use of artificial
neural networks. They found that the use of artificial neural networks
allowed enhanced identification of damaged trees compared to the
more classic approach using a logistic regression model.

In this paper we present analysis of the data on wind damage at an
individual tree level from the Landes de Gascogne Forest using two
methods that are based on machine learning (ML) techniques
(Alpaydin, 2014). This was to determine if such approaches can provide
a better prediction of wind risk than was possible with more conven-
tional approaches as reported by Kamimura et al. (2016). The approach
we took were based on artificial neural networks (NN) (Patterson,
1996) and random forests (RF) (Breiman, 2001). We also developed
logistic regression models (LOG) for comparison with the previous work
(designated LR in Kamimura et al. (2016)). We analysed damage from
the small Nezer Forest (∼80 km2) containing a set of 29 permanent
sample plots that were damaged in Storm Martin in December 1999 and
from a much larger set of 235 plots from the National Forest Inventory
in the Landes de Gascogne Forest (∼10,000 km2) that were examined
directly after damage from Storm Klaus in January 2009. The purpose
was to evaluate the accuracy and discriminatory ability of the models
using all available input data and to test the models both on the data set
from which they were developed and the other independent data set to
see how portable the models were. We wanted to test whether these

new approaches provided an improvement in damage prediction and to
determine which group of input parameters are most important for
model performance. We do not attempt to directly identify the factors
controlling the propensity of trees to damage, which has been the
subject of numerous previous studies (e.g. Albrecht et al., 2010; Colin
et al., 2009; Dobbertin, 2002; Nicoll et al., 2006; Valinger and Fridman,
2011)

We also tested whether such ML models could replace the me-
chanistic model GALES by “learning” how to predict the critical wind
speed for tree damage from a large number of GALES runs on data
representing the range of conditions found in the Landes de Gascogne
Forest. The purpose was to determine the potential of providing a faster
method of calculating the vulnerability of forests, and one that could be
represented in a relatively simple equation. This could allow rapid
calculation of risk over large areas and be extremely helpful in testing
different management and planning scenarios with the consequences
immediately available to the end-users. Such ML models could also be
used in optimisation of forest planning when there are multiple objec-
tives and constraints (e.g. risk of wind damage) as previously demon-
strated by Zeng et al., (2007).

2. Materials and methods

2.1. General approach

The general modelling approach followed was similar to Kamimura
et al. (2016) (see their Fig. 2). The main differences are that models
were developed separately using the National Forest Inventory data
(NFI data), collected after Storm Klaus (Inventaire Forestier National.
20091), and the Nezer Forest data, collected after Storm Martin
(Chehata et al., 2014). The models were developed from each data set
using a balanced selection of trees (similar number of undamaged and
damaged trees) selected from 90% of the data (see Section 2.3.5 below).
The models were then tested against the remaining 10% of the data
(Part 2 of Fig. 1). This was repeated 10 times with a different 10% of the
data being used for testing each time. Finally, both sets of models were
tested with the other independent data by creating 10 versions of each
model using a different selection of balanced data and testing against
the whole of the other data set. This was to check how transferable the
models were and to check their ability to predict the damage from a
different storm from the one used in their development. In this paper
we did not consider the type of damage (breakage or overturning) but
combined all trees known to have been damaged by a storm.

In addition a set of models was developed to predict critical wind
speeds (CWS) using an artificially generated data set to see if it was
possible to substitute for GALES (Part 1 of Fig. 1). CWS calculated both
by GALES and by these GALES substitute models were subsequently
used in the development of the damage models along with character-
istics of the individual trees, stand, and site (Part 2 of Fig. 1).

In the model development and validation we focussed on the CWS
and WAsP calculations at 29 m above the ground for the Nezer Forest
and at 40 m above the ground for the NFI data. This was to help
maintain the focus of the paper and to ensure direct compatibility with
Kamimura et al. (2016). Results for other calculation heights are pre-
sented in Appendix A and indicated where appropriate.

2.2. Machine learning methods

Loosely inspired by biological neural networks, artificial neural
networks (NN) are able to approximate a non-linear function to de-
scribe a mapping between a set of inputs and outputs. They are able to
learn from incomplete and noisy data sets, making them particularly
suitable for applications within forestry where data is hard to collect

1 https://inventaire-forestier.ign.fr/spip.php?article610
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and likely to contain inaccuracies due to measurement difficulties.
Previous applications of NNs in forestry have dealt with mortality es-
timation (Guan and Gertner, 1995; Hasenauer et al., 2001), and un-
certainty assessment of forest growth models (Guan et al., 1997).
However, a weakness in the neural network approach is that the
learned function describing the non-linear mapping cannot be easily
understood in terms of processes controlling behaviour, e.g. wind da-
mage in forests. They are therefore tools that can be of practical use but
do not easily provide scientific insight.

Random forests (RF) are a more recent technique (Breiman, 2001)
that have also proved successful in developing models from noisy and
unbalanced data. The RF algorithm builds a collection of independent
decision trees whose results are combined to make a prediction for a
given data record. The technique has the advantage of being very fast to
train, and typically overcomes overfitting problems associated with
decision tree methods. They are becoming extremely popular in many
aspects of forest modelling (e.g. Seidl et al., 2011).

Logistic regression models (LOG) have been regularly used in as-
sessing the risk of wind damage because their dependent variables are
categorical and if the binary dependent variable is binary (0/1) they are
ideal for wind damage prediction (damaged/undamaged). In particular,
logistic regression models can be used to identify which factors are
associated with wind damage. In this paper, a logistic regression model
similar to those developed by Albrecht et al. (2012); Valinger and
Fridman (2011) and Kamimura et al. (2016) was used.

2.3. Software and methods

The Weka software "workbench" (Waikato Environment for
Knowledge Analysis) incorporates a large number of standard Machine
Learning Techniques (ML) including the methods described above in a
freely available tool (Frank et al., 2016). With it, a specialist in a par-
ticular field is able to use ML to derive useful knowledge from databases
that are far too large to be analysed by hand. The workbench can either
be used through a supplied Graphical User Interface, or incorporated
directly in Java code using a supplied library. All experiments described
here are conducted using Weka version 3.6.13. The three models used
are described below. The NN and RF can be both be trained as classi-
fiers, i.e. predicting a class value (damaged/no damage) or to undertake
regression, i.e. output a continuous value. We did not attempt any
model tuning in order to determine how well the Weka software per-
formed “off the shelf”.

2.3.1. Artificial neural network
The artificial neural network contains an input layer consisting of n

neurons, each corresponding to one of the selected inputs variables. In
classification mode, the output layer contains two neurons, one in-
dicating the positive class, and the other the negative class. When used
for regression, there is a single output neuron. In addition, there is a
single hidden layer consisting of (inputs+ outputs)/2 neurons. Each
neuron receives a weighted sum of inputs = =

=x w vi
i k

i i1 , where vi = the

Fig. 1. Outline of modelling approach (LOG: logistic re-
gression model, LIN: linear regression model, NN: artificial
neural networks, RF: random forests; CWS: critical wind
speed). In Part 1 (top) three modelling approaches (LIN,
NN, RF) were trained to predict the CWS for damage based
on a very large set (1970 individual trees) of previous si-
mulations using GALES. In Part 2 (bottom) three model-
ling approaches (LOG, NN, RF) were trained (left-hand
side) to predict damage using either the NFI or the Nezer
Forest data (90% of data from each forest) together with
either the GALES derived CWS, or the CWS values pre-
dicted using the models developed in Part 1. This pro-
duced a set of damage models (LOG/NN/RF) based on the
Nezer Forest data and a set of damage models based on the
NFI data. All damage models were then tested on the re-
maining 10% of the appropriate data set (right-hand side).
The pattern of training and testing was repeated 10 times
using 90% of the data for the training and a different re-
maining 10% of the data each time for validation.
Compare with Fig. 2 in Kamimura et al. (2016).
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value of the input and wi the weight connecting the input to the neuron,
and outputs a value s(x) using a sigmoid activation function as defined
in Eq. (1):

=
+

s x
e

( ) 1
1 cx (1)

Weights are initialised at random and the backpropagation algorithm
used to find a set of weights that minimizes the total error at the out-
puts, summed over all input records:

=
=

E o t1
2 i

p

i i
1

2

(2)

Backpropagation is a gradient descent technique that modifies each
weight in small steps based on the gradient of the error function with
respect to the weight concerned, e.g.

=w w E
wn n

n (3)

where wn is the total error calculated at each step. The learning rate is
an adjustable parameter that modifies the step size, but was set to 0.3 in
all our experiments. An additional momentum term is used that enables
the gradient descent algorithm to escape from local minima, and is set
to a default value of 0.2. Backpropagation is applied for a fixed number
of 500 iterations for each model. These represent the default settings in
the Weka software.

2.3.2. Random forests
The Random Forests algorithm uses a bagging approach, combined

with a Random Tree learning algorithm. In bagging, multiple random
subsets of the data set are created by sampling n instances with re-
placement from the data set. For each subset, a random tree classifier is
grown: at each node, m variables are selected at random, from which
the one that optimizes the information gain is chosen. We use the de-
fault Weka parameters: a forest of 100 random trees are created; each
tree has unlimited depth and is grown without pruning; at each node m
= log2(number_of_attributes) + 1 variables are randomly selected.

2.3.3. Logistic regression
Logistic regression estimates the probability of a binary response

variable based on the set of predictor inputs. The Weka implementation
of the multinomial logistic regression model with a ridge estimator is
loosely based on the description given by Le Cessie and Van
Houwelingen (1992).

Given k classes, and n instances with m attributes, an m*(k-1)
parameter matrix β is calculated. The probability of class i is given by
Eq. 4 where Yi are the mutually independent response variables (1,0), p
(Xi) is the probability that Yi = 1, and Xi are the m-dimensional rows of
covariates.

=
+

p X X
X

( ) exp( )
{1 exp( )}i

i

i (4)

The log likelihood is given by Eq. (5). A ridge estimator is used to
improve the parameter estimates and diminish the error made by fur-
ther prediction. In order to find the matrix for which l is minimised, a
Quasi-Newton Method is used to search for the optimized values of the
m*(k-1) variables. Before Weka runs the optimization procedure, the
matrix is compressed into a m*(k-1) vector. The default Weka para-
meter for the ridge estimator of 1× 10−8 is used.

= + +l Y p X Y p X[ log{ ( )} (1 )log{1 ( )}] *
i

i i i i
2

(5)

2.3.4. Models
We evaluate the models above with respect to two functions:
Damage prediction: We adopted a dichotomous model which predicts

damage at the level of individual trees in two categories, damaged or
undamaged. A separate model was trained for each of the two data sets.
For each of the three classification methods described, the default
parameters supplied with Weka were used to train the model.

Critical wind speed prediction: A linear regression model (LIN) was
used instead of the logistic regression model (LOG) because it is more
appropriate for a variable output (non-dichotomous). All models (LIN,
NN, RF) were trained to predict critical wind speeds for breakage and
overturning at tree level using values obtained from running a GALES
simulation as training data (see 2.4.1 below). The variables used to
train the models are given in Table 1.

2.3.5. Training and pre-processing
Cross-validation is used to obtain an unbiased estimate of the per-

formance of each model on unseen test data. For each model, the data
set is randomly divided into 10 subsets (folds) of equal size. 9 folds are
combined to train a model, with the left-out fold used for testing the
trained model. The procedure is repeated leaving each of the 10 folds
out in turn. The final reported accuracy is the average of the accuracy
value obtained on each of the 10 folds.

For damage prediction, given that the data is unbalanced in terms of
the ratio of damaged/undamaged trees, it is preferable to bias the data
used to train the models towards a uniform class distribution. The Weka
SpreadSubsample filter is applied to the subset of data used in each
training fold during cross-validation: this produces a new data set twice
the size of the minority class, by selecting all instances of the minority
class (damaged trees in this case) and randomly sampling from the
majority class (undamaged trees in this case). In order to eliminate
variability due to the effects of random sampling in this way, 10 new
data sets were created as just described. All models are trained and
tested as described above using each sub-sampled data set, with mean
results, standard deviations and/or boxplots used to report findings.

Table 1
Characteristics of the data set used to train the LIN, NN and RF models to simulate GALES critical wind speed predictions for maritime pine.

Model Variable Mean Value Range Comment

Soil 3 None Fixed as podzol
Rooting 2 None Fixed as Deep rooting ≥ 80 cm
Upwind gap width (m) 245.6 0-500 When gap= 0m then tree is effectively inside forest
Position relative to edge (m) 0 None Fixed to always be at stand edge
Tree DBH (cm) 41.9 2.5-110
Tree Height (m) 23.6 2.5-40 40m is just above the maximum tree height of maritime pine in Landes de Gascogne Forest
Tree taper (m/m) 23.6 30-130 Constrained between 30 and 130 so trees not too thin or too tapered
Stand DBH (cm) 43.9 5-65
Stand height (m) 24.8 2.5-35
Stand taper (m/m) 60.9 30-130 Constrained between 30 and 130 so trees not too thin or too tapered
Tree DBH/Stand DBH 0.98 0.3-1.7 Constrained so that tree size is within range± 70% of stand size
Tree height/Stand height 0.98 0.3-1.7 Constrained so that tree size is within range± 70% of stand size
Stand density (trees/ha) 1840 30-3600
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2.3.6. Outputs from each model
Damage-prediction models: For the NN, Weka returns a probability

distribution based on the outputs from the network defining the prob-
ability of a tree being damaged, for each input vector. The dis-
crimination threshold is set at 0.5, such that a probability of greater
than or equal to 0.5 results in the tree being classified as damaged. The
same threshold is used with the LOG and the RF models. No adjustment
of this threshold was made in order to determine how well the models
performed without any tuning.

Critical wind-speed models: the LIN, NN and RF models output a
single real-valued number for the critical wind speed for breakage and a
single real-valued number for the critical wind speed for overturning.

2.3.7. Performance metrics
For the dichotomous models, we record classification accuracy, i.e.

the proportion of true results (both true positives and true negatives)
among the total number of cases examined. In addition, we report the
area underneath the receiver-operating curve (AUC). This plots the false
positive rate against the false negative rate: a perfect classifier would
have an AUC of 1.0; an area of 0.5 is equivalent to random guessing.
Typically, an AUC > 0.7 is considered to be fair, above 0.8 to be good
and above 0.9 to be excellent (Hosmer and Lemeshow, 2000).

For prediction of numeric values (i.e. critical wind speed) the cor-
relation coefficient is reported. All statistics were either calculated
within the Weka software or with Matlab 2016a (Mathworks, Natick
MA, USA).

2.4. GALES

GALES is a hybrid mechanistic model for predicting the critical
wind speeds (CWS) for damage to forest stands and trees due to over-
turning and breakage and is designated a CWS model in the convention
adopted by Gardiner et al. (2008). If wind climate data is available then
the probability of such wind speeds being exceeded and damage oc-
curring is also calculated, and this version of the model is called For-
estGALES and is designated a Wind Risk Management tool (WRM) using
the same designation system. GALES requires information on the tree
species, tree diameter at breast height (DBH), tree height, stand mean
tree diameter at breast height (DBHmean), stand mean tree height, mean
stand spacing, soil type and rooting depth. Although GALES calculates
the CWS for both stem breakage and overturning (uprooting), in this
paper the CWS used in damage model development is always the
minimum of the two, i.e. the most likely to occur and we did not at-
tempt to discriminate between damage types.

Full details of the model and its validation can be found in Gardiner
et al. (2000) and Hale et al. (2015). The parameters in GALES used for
maritime pine stands are given in Cucchi et al. (2005).

2.4.1. GALES artificial training data set
A large number of potential maritime pine stands with character-

istics that covered the full range of possible characteristics (see Table 1
for details of the ranges sampled) were created as inputs to GALES. The
stand characteristics were selected using Latin Hyper Cube Sampling to
give uniform sampling. 10,000 stands were created, which after fil-
tering for duplicates, constraining the ratio of stand mean tree height to
stand mean DBH between 30 (very high taper) and 130 (very low
taper), and constraining individual tree DBH and height to be
within±70% of the stand mean values, left 1970 simulations.

GALES was then run for the 1970 stands and the CWS values for tree
overturning and stem breakage were calculated at 10m above the zero-
plane displacement (d+10m), which is the standard height for such
measurements in Gardiner et al. (2000), and at 29m and 40m above
the ground, which correspond to the maximum tree heights in the Nezer
Forest and in the whole of the NFI data set respectively (Kamimura
et al., 2016).

The outputs from the GALES runs were then used to train LIN, NN

and RF models to predict CWS for overturning and breakage at d
+10m, 29m and 40m. The trained models were finally tested by
comparing their predictions of CWS against GALES calculated CWS at d
+10m and 29m for the Nezer Forest and at d+10m and 40m for the
NFI data (see Part 1 in Fig. 1).

2.5. WAsP predicted wind speeds

The Wind Atlas Analysis and Application Program (WAsP)
(Mortensen et al., 1993) was used to estimate the wind speeds above
the forest during the Martin and Klaus storms. A land-use map (eleva-
tion range= 0 to 300m; contour interval= 50m) plus an aerodynamic
roughness map (water= 0.003m; unforested areas= 0.01m;
forest= 1.0m) was used in the simulations. The input wind speeds for
WAsP were taken from the coastal meteorological station at Cap Ferret
(approximately 25 km north-west of the Nezer Forest at 44°38′N,
1°15′W). Wind speeds were simulated at a horizontal resolution of
500 x 500m, at a height of 29m (just above height of tallest trees in the
Nezer Forest) for Storm Martin, and at heights of 29 and 40m (just
above height of tallest trees in the NFI data) for Storm Klaus. Full details
are given in Kamimura et al. (2016).

2.6. Study site and data

The field data used in this study are the same data as used in
Kamimura et al. (2016). There are two groups of data. The first is from a
field survey of 29 permanent plots (400m2·plot−1) in the Nezer Forest,
located in the Nouvelle-Aquitaine region (44°34′20″N, 1°2′20″W). Tree
size was surveyed in 1998, and damaged trees were determined after
Storm Martin in 1999 (Table 2). Data consist of tree height, stem dia-
meter at breast height (DBH, 1.3 m), tree location, and damage status
for most trees. The data was not sub-divided as was the case in
Kamimura et al. (2016). The second data set was from field surveys of
the National Forest Inventory in France (Inventaire Forestier National;
NFI, (Robert et al., 2010)) in the same region, which is predominately
maritime pine stands. The annual survey plots (1 point for 10 km²) are
chosen in a systematic sub-sample of the 5-year sample covering the
entire country. The forest field plots are composed of four concentric
plots allowing the measurement of different tree diameter classes
(Robert et al., 2010). We used data collected from 2007 to 2008 from a
total of 235 plots chosen in two ecological regions of the Landes de
Gascogne Forest, and wherever more than half of the trees in each plot
were maritime pine. After Storm Klaus in 2009, damaged trees in the
NFI plots were identified by an additional follow up field survey to list
damaged trees (Table 2). For each plot in the two data sets we added
mean plot height, the mean plot DBH and the average stem spacing
derived from the individual tree data. Spatial information included the
distance of each tree from the windward stand edge (west) and the
upwind gap size (distance in a westerly direction between the forest and
the next forest block) and were estimated based on the position of the
inventory plot (only accurate to within 500m). However, in this paper
we assumed like Kamimura et al. (2016) that all the trees were effec-
tively at a new edge because the best results were previously found with
this assumption. This assumption is justified by the observation from
aerial photography that damage propagated through stands during the
storms and this led to new trees becoming exposed to an advancing
damaged forest edge. The NFI plots were identified either within the
Landes (main forest production area inland from the coast) or Dunes

Table 2
Levels of damage in the Nezer Forest and within the NFI database.

Data Number of Trees % Damaged % Undamaged

Nezer Forest 1080 12% (134 trees) 88% (946 trees)
NFI 1705 33% (566 trees) 67% (1139 trees)

E. Hart et al. Agricultural and Forest Meteorology 265 (2019) 16–29

20



(forest along coastal dunes) areas based on the ecological region given
in the NFI survey, whereas all the plots in the Nezer Foret were de-
signated as Landes. Soil characteristics and hydrological status were
derived from the French soils database (GISsol, 2011) and the ecolo-
gical observations in the NFI plots (Bruno and Bartoli, 2001). Soils are
mainly sandy podzols and arenosols, respectively in the Landes and in
the Dunes areas. Gleys and brown soils are also present but only in the
Landes area. In the Nezer Forest the soils are hydromorphic podzols,
and their dominant hydrological status is "slightly wet". Soil depth is
greater in the Dunes and Landes area with a dry hydrological status
than in those Landes areas with a wetter hydrological status. An outline
of the data used in the development of the models is provided in
Table 3.

Full details of the data and the calculation of derived parameters is
provided in Kamimura et al. (2016) and the location of the forests and
the individual sample plots is given in Fig. 1 of Kamimura et al. (2016).

3. Results

3.1. Predicting CWS

The LIN, NN and RF model simulations of CWS were compared to
the actual CWS produced by GALES for the Nezer and NFI data at 29m
and 40m above the ground respectively, and are displayed in Table 4.
Information for predictions at d+10m can be found in Table A1 in
Appendix A.

The results show a high level of correlation between the predictions
of GALES and those of the models. In all cases the models are correlated
to the GALES predictions with r2 values greater than 0.77 and in most
cases above 0.9. In all cases the predictions for breakage are slightly less
well correlated than the predictions for overturning. This might be a

reflection of the fact that only approximately 15% of trees were da-
maged by breakage during the two storms (trees in the Landes de
Gascogne Forest are more susceptible to overturning), and the models
are consequently better trained to predict overturning than breakage
(more examples of overturning). In all cases the LIN models perform
least well, the RF second best and the NN performs best (average cor-
relations of 0.847, 0.899 and 0.917 respectively). However, the RMS
errors in the predictions are quite large with values ranging between
2.87 to 10.22ms−1, and with an average value of 5.02ms−1. This
suggests that such models can be used for predictions for multiple trees
and forest stands over large areas but not for precise predictions for a
small number of trees or individual stands. Overall the models appear
better at predicting the CWS at d+10m rather than at fixed heights
with r2 values greater than 0.94 (see Table A1 in Appendix A). This is
probably due to the fact that d+10m is at a relatively consistent height
above the modelled trees (< 10m), whereas with the fixed height va-
lues of 29 and 40m the distance from the top of the trees to the cal-
culation height is much more variable (22.5 to 37.5m).

A large advantage was obtained in computational efficiency. The
GALES model used in this paper required 0.37ms to calculate the CWS
for damage of a single tree using already known tree characteristics,
whereas the LIN and NN derived models only required 0.013ms per
tree. This represents a 28 times increase in calculation speed. The RF
derived CWS model required 0.065ms per tree, a calculation speed
more than 5.7 times faster than GALES. In the GALES version of
Gardiner et al. (2000) there is an iterative solution for calculating the
additional moment provided by the overhanging displaced mass of the
canopy during a storm (Neild and Wood, 1999), whereas in this paper
we used a simple analytical bending equation (Gardiner, 1992). Addi-
tional simulations showed that a further computational efficiency of a
factor of 2 would be obtained over the more complicated version of

Table 3
Parameters and their range and standard deviation used in the model development for Nezer Forest and the NFI database. DBH is diameter at breast
height (1.3 m above ground) and CI_BAL is a competition index based on the basal area of all trees larger than the subject tree (Biging and Dobbertin,
1995).

Model Variable NFI: Range (Stdev) Nezer Forest: Range (Stdev)

Gap size (m) 41-328.2 (66.7) 28.4-262.5 (66.4)
Stand Mean DBH (cm) 8.0-65.1 (12.9) 3.9-43.4 (10.6)
Stand Mean Height (m) 4.1-32.8 (6.7) 2.8-26.3 (6.4)
Stand Density (ha) 28.3-2740.7 (399.7) 200-3594 (676.1)
Stand Mean CI_BAL 0.00-57.9 (9.7) 1.1-19.6 (6.6)
Tree DBH (cm) 7.6-111.00 (14.4) 2.5-61.0 (11.3)
Tree Height (m) 3.60-38.60 (6.9) 2.3-26.7 (6.6)
Tree CI_BAL 0.00-270.7 (18.1) 0.00-35.9 (9.7)
Distance from Edge (m) 0 0
CWS Breakage at d+10m GALES (ms−1) 10.9-45.4 (5.8) 12.7-46.2 (8.0)
CWS Overturning at d+10m GALES (ms−1) 10.0-32.5 (5.2) 11.3-40.0 (7.2)
CWS Breakage at 29m GALES (ms−1) 16.0-58.8 (5.5) 24.3-60.8 (7.6)
CWS Overturning at 29m GALES (ms−1) 13.7-48.2 (5.1) 25.0-53.7 (6.7)
CWS Breakage at 40m GALES (ms−1) 20.3-63.6 (5.8) Not calculated
CWS Overturning at 40m GALES (ms−1) 18.8-52.2 (5.3) Not calculated
WAsP predicted wind speeds at 29m (ms−1) 21-42 (4.5) 26.2-31.8 (1.8)
WAsP predicted wind speeds at 40m (ms−1) 24-43 (4.4) Not calculated
Soil (1=arenosol, 2=brown soils, 3=podzol, 4=gleys) 1-4 3
Hydro (1=very wet, 2=slightly wet, 3=dry) 1-3 2
Dune (1=Dune area, 0 = Landes area) 0-1 0

Table 4
Results of comparison of predictions from the trained LIN/NN/RF models and GALES for Nezer at 29m and NFI data at 40m. Numbers are correlation coefficient
between trained model results and GALES predictions and root-mean square (RMS) error is given in brackets in ms−1.

Training Set Test Set Output LIN NN RF

GALES 29m predictions from artificial data Nezer CWS for breakage 0.8836 (6.4165) 0.9251 (10.2185) 0.9137 (6.5713)
GALES 29m predictions from artificial data Nezer CWS for overturning 0.9131 (3.0748) 0.9516 (3.838) 0.9394 (4.6022)
GALES 40m predictions from artificial data NFI CWS for breakage 0.7659 (6.0699) 0.8565 (4.8805) 0.8437 (4.6879)
GALES 40m predictions from artificial data NFI CWS for overturning 0.8264 (3.6150) 0.9347 (3.398) 0.9004 (2.8682)
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Fig. 2. Accuracy and AUC for the LOG, NN and RF damage model predictions using all tree, stand and site data and the GALES predicted CWSs at 29m for the Nezer
Forest data (LOG_Nez, NN_Nez, RF_Nez) and the GALES predicted CWSs at 40m for the NFI damage data (LOG_NFI, NN_NFI, RF_NFI). In addition a comparison is
made for the NFI data (LIN_CWS, NN_CWS, RF_CWS) using the CWS values derived (see Part 1 of Fig. 1) from the three CWS models (LIN, NN, RF) instead of the
GALES values.
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GALES. All calculations were based on 10 runs for all 1705 trees in the
NFI data set using a MathCad program (PTC, Needham, United States)
on a Dell Latitude© laptop (Dell, Round Rock, United States) running at
2.1 GHz (4 CPUs) with 16.0 GB of memory.

3.2. Wind damage to individual trees

3.2.1. Nezer Forest
In Fig. 2 the performance of the three damage modelling approaches

(LOG/NN/RF) in predicting damage or no damage for the Nezer Forest
is illustrated (LOG_Nez, NN_Nez, RF_Nez). All the parameters in Table 3
were used together with the GALES CWS and WAsP wind speed cal-
culated at 29m. The accuracy and AUC values are given in the All
Variables column (indicating all possible variables used) in Table 5 and
Table 6 respectively. The accuracy of the three models are all reason-
ably good (≥ 67%) but the NN model has a significantly higher accu-
racy than the LOG model with a value of 68.7% and the RF model has a
statistically significantly higher accuracy than both other models with a
value of 72.5%. All three models have high values of AUC (≥ 0.8),
which indicate good discrimination between damaged and undamaged
trees (Hosmer and Lemeshow, 2000). The AUC values for all three
models are higher than the value obtained by Kamimura et al. (2016)
for the Nezer Forest using logistic regression models (AUC=0.76).
However, the accuracies are lower for the LOG and NN models in
comparison to the earlier work, which had an accuracy of between
71.9–72.4% in the Nezer Forest. However, in Kamimura et al. (2016)
the model accuracy was optimized by adjusting the cut points for the
probability of damage between 0 and 1 until the true positive rate
equalled the true negative rate (Hosmer and Lemeshow, 2000). As
described earlier, in this paper no model optimisation was performed
and the cut point was fixed at 0.5 in order to determine model per-
formance with no tuning.

The accuracy and AUC of the models for the same data but using the
calculated critical wind speeds at d+10m above the ground are pre-
sented in Fig. A.1 and Tables A2 and A3 of Appendix A. The results are
very similar to the results using the CWS at 29m and suggest that the
height of CWS calculation is not especially critical and the inclusion of
the WAsP calculated wind speeds made little difference to the accuracy
or discriminatory ability of the models.

3.2.2. NFI data (Landes de Gascogne Forest)
In Fig. 2 there is also the same analysis as presented for the Nezer

Forest data but for the NFI data and using the GALES CWS and WAsP
predicted wind speeds at 40m (LOG_NFI, NN_NFI, RF_NFI). The values
are tabulated in Tables 5 and 6. In addition the results using the model
predicted CWSs calculated in Section 3.1 were also used (LIN_CWS,
NN_CWS, RF_CWS) in place of the GALES derived CWS. The accuracies
of the LOG and NN models are very similar to the logistic regression
model of Kamimura et al. (2016) where the accuracy was 69.6% when
the NFI data were used (see Table 8 in Kamimura et al., 2016), but the
RF model is significantly more accurate (76.3%). The discriminatory
behaviour of the LOG and NN models is also similar to the logistic re-
gression model in Kamimura et al. (2016) with AUC values close to 0.77
compared to their value of 0.74. However, the RF model shows superior
discriminatory power with an AUC value of 0.84. In the simulations
using the model predicted CWSs in place of the GALES derived CWS
(LIN_CWS, NN_CWS, RF_CWS) the AUC values are unaffected and only
the accuracy of the simulations using the CWS derived from the linear
regression model (LIN_CWS compared to LOG_NFI) showed a significant
reduction (p=0.0164).

The results for the NFI data using calculations at d+10m and 29m
and are shown in Fig. A.2 and Fig. A3, and Tables A2 and A3 in ap-
pendix A. They are very similar to the results presented here.

3.2.3. Model sensitivity to individual parameters
The effects of leaving out one variable at a time on the accuracy and

AUC value of the models for the Nezer Forest using the CWS and WAsP
wind speed calculated at 29m are given in Tables 5 and 6 and plotted in
Fig. A.4 of Appendix A. For each variable removal the model was al-
ways retrained with the remaining variables. The model performance
using the CWS calculated at d+10m are displayed in Fig. A.5 and ta-
bulated in Tables A.2 and A.3 of Appendix A.

Variable removal only has an effect for the LOG model where the
removal of stand density and mean stand DBH slightly reduce the ac-
curacy and the removal of stand density slightly reduces the AUC (all
significant at the p=0.05 level). However, for the NN and RF models
the removal of no variable had a significant effect on either model
accuracy or AUC. Note that in all the Nezer Forest simulations removing
Dune, Hydro and Soil have no impact because they each only have a
single value in this forest (Table 3).

The response of the models developed using the NFI data and the
CWS and WAsP wind speed calculated at 40m are also tabulated in
Tables 5 and 6 and plotted in Fig. A.6 of Appendix A. The results for the
model performance using the CWS calculated at 29m and d+10m are
displayed in Fig. A.7 and Fig. A.8 and Tables A.2 and A.3 of Appendix
A. Removal of Stand_density, Dune and Hydro reduces the accuracy and
AUC of the LOG model and additionally the removal of Soil and the
WAsP calculated wind speed reduces the AUC of the LOG model. The
NN model is only affected by the removal of Hydro, which reduces the
AUC of the model. The RF model is not affected by the removal of any
variable.

Overall there is relatively little impact of parameter removal on
model performance. The LOG model is the most sensitive and the RF
model almost completely insensitive. This is probably not surprising
because of the way that the LOG and NN models utilise all the available
variables, whereas the RF model creates nodes at each of which m
variables are selected at random, from which the one that optimizes the
information gain is chosen. Interestingly the removal of information on
whether in the Dune or Landes area (Dune), the hydrological state of the
soil, and to a lesser extent the soil type itself had an impact on the LOG
and NN model developed using the NFI data. This suggests that this
information provides an improvement in discrimination between da-
mage and no damage but, because these variables are not strongly
correlated to other variables, the models cannot create an equally ef-
fective alternative model when this information is missing.

3.2.4. Model sensitivity to removal of parameter groups
The sensitivity of the models to the absence of groups of input

variables was also tested against the NFI data. Four parameter groups
were defined as Stand= {Gap Size, Stand Mean DBH, Stand Mean Height,
Stand Density, Stand Mean CI_BAL}; Tree= {Tree DBH, Tree Height, Tree
CI_BAL}, Site = {WAsP 40 m, Dune, Hydro, Soil} and CWS+WAsP =
{CWS Breakage, CWS Overturn, WAsP 40m}. The results are illustrated
in Fig. 3.

There are clear differences in the behaviour of the three models. The
LOG and NN models are badly affected by the removal of Site in-
formation and this was not compensated for by Tree or Stand in-
formation. Site information on its own reduced the performance of both
these models by a large and significant amount and this reflects the
findings from the single parameter removal in Section 3.2.3 that
showed the LOG and NN models are sensitive to the removal of Dune,
Hydro, or Soil information. Removal of Stand information had a small
but significant influence on the LOG and NN models, but removal of just
Tree information did not significantly affect the results. For the RF
model the story is different and the loss of Stand information is the most
important factor. In fact Stand information on its own is enough to
produce high model accuracy and AUC values. In addition, the RF
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model results were slightly but significantly improved when Tree level
information was excluded. The CWS+WAsP information on its own
provided reduced but reasonable levels of accuracy and AUC for all
models, and generally gave higher or equivalent results compared to
any other single parameter group (except Stand with the RF model)
suggesting that the GALES model does provide a reasonable assessment

of damage risk in these forests.
In summary, all models benefit from Stand level information and

results are improved in particular by Site information for the LOG and
NN models. The LOG and NN models are unaffected and the RF model is
slightly adversely affected by the inclusion of Tree information and all
models performed reasonably, but with reduced accuracy and

Fig. 3. Test of impact of leaving out different parameter groups in the damage models on the overall model accuracy and discriminatory ability (AUC) for the NFI
data. Stand= {Gap Size, Stand Mean DBH, Stand Mean Height, Stand Density, Stand Mean CI_BAL}; Tree= {Tree DBH, Tree Height, Tree CI_BAL}, Site= {WAsP 40m,
Dune, Hydro, Soil}, CWS+WAsP = {CWS Breakage, CWS Overturn, WAsP 40m}. Note change of scales on the y-axes compared to Fig. 2.
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discrimination, when just the CWS values and the WAsP wind speed
were used.

3.2.5. Portability of models
Model portability was tested by using the models developed from

the Nezer Forest damage/no damage data and applying them to the NFI
damage/no damage data in the same way as Kamimura et al. (2016).
But in addition we also tested the applicability of the NFI derived
models on the smaller Nezer Forest data. In the same manner as dis-
cussed previously (Sections 3.2.1 and 3.2.2) the test data was divided
into 10 groups to allow 10 evaluations of model performance. Only
calculations using the CWS calculated at d+10m and 29m were used
because calculations at 40m were not available in the Nezer Forest. The

results are presented for the calculations at 29m in Fig. 4 and sum-
marized for both heights in Table A4 in Appendix A. It is clear from the
results that there is a severe reduction in model accuracy and dis-
criminatory ability if the models developed on the Nezer Forest data
(small forest area) are applied to the whole maritime pine forest estate
in the Landes de Gascogne Forest (NFI data). In fact the models all fail
to provide accurate predictions (all values between 50 and 55%) and
have no discriminatory ability (AUC values close to 0.5). In the Nezer
Forest there was a limited range of tree sizes, and there was no variation
in soil or hydrological properties and the whole area was classified as a
Landes ecological region. This meant there was no input data covering
the larger range of conditions that exist in the NFI data. However, the
models developed with the much larger data set from across the whole

Fig. 4. Comparison of accuracy and AUC for predictions using the Nezer derived models on Nezer data (LOG_Nez_Nez, NN_Nez_Nez, RF_Nez_Nez), using the Nezer
derived models on NFI data (LOG_Nez_NFI, NN_Nez_NFI, RF_Nez_NFI), NFI derived models on NFI data (LOG_NFI_NFI, NN_NFI_NFI, RF_NFI_NFI), and NFI derived
models on Nezer data (LOG_NFI_Nez, NN_NFI_Nez, RF_NFI_Nez). All calculations used the CWSs calculated from GALES at 29m height.
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Landes de Gascogne Forest (NFI data) performed almost as well on the
Nezer data set as when tested on the data from which it was originally
developed. In the case of the LOG model the performance appeared to
be actually enhanced in terms of accuracy (see Fig. 4 and compare
LOG_NFI_NFI and LOG_NFI_Nez) although the difference was just not
significant at the p=0.05 level (p= 0.0592). The NN model had re-
duced accuracy and discriminatory ability (both significant at the
p=0.05 level) and the accuracy was very variable between the 10
tests. The RF model had no loss of accuracy but a reduction in dis-
criminatory ability (significant at p=0.05 level).

The results illustrate that the models developed from damage data
in January 2009 (Storm Klaus) were able to successfully predict damage
from a previous storm in December 1999 (Storm Martin) when the state
of the soil and meteorological conditions were different. This suggests
that such models, and especially the RF model, have the potential for
predicting damage risk to individual trees for future storms if developed
on a comprehensive enough data set. Unfortunately, we have no other
damage data sets with maritime pine on which to further test the
models.

4. Discussion

This paper follows on from the earlier work of Kamimura et al.
(2016), which developed and tested the ability of logistic regression
model and the hybrid mechanistic model GALES to calculate individual
maritime pine trees at risk of wind damage in the Landes de Gascogne
Forest in south-west France. That paper found good agreement of the
predictions of the GALES model against observed damage for specific
conditions of soil and soil hydrological status, specifically hydro-
morphic podzol. This was the only soil type on which tree pulling ex-
periments in the region had been conducted and results from these
experiments had been used to parameterise the GALES model (Cucchi
et al., 2005). However, when the soil and hydrological conditions
changed the model had poor discrimination success between damaged
and undamaged trees (typically AUC < 0.7). The logistic model was
able to simulate well the damage in the Nezer Forest and the region
represented by the NFI if the logistic model was calibrated for each
forest area. However, the logistic model developed for the Nezer Forest
had no discriminatory ability when applied to the NFI forest area with a
much larger range of conditions. The logistic model was therefore not
easily transferable even when the data from the NFI was filtered to only
investigate soil and hydrological conditions similar to the ones in the
Nezer Forest, where the model had been developed (Kamimura et al.,
2016). This is a reflection of the fact that a model “trained” on a data set
with a limited range, and which tries to minimise errors with that data
set, fails to produce satisfactory results when used with a data set with a
wider range of characteristics (tree sizes, soil type, hydrological con-
ditions, etc.)

In this paper we have attempted to determine whether other mod-
elling approaches such as artificial neural networks and random forests
are able to perform more accurately and with greater discrimination
than a logistic regression model or the GALES model. In addition we
wanted to determine if the models were more transferable from one
area to another than was previously found in Kamimura et al. (2016).
The same data sets were used in this paper and the parameterisation of
the GALES model used in this paper to calculate critical wind speeds
was identical to the previous work. In addition to developing artificial
neural network and random forests models we again developed a lo-
gistic regression model for direct comparison with the previous work.

In addition, we wanted to determine if it was possible to substitute
the hybrid-mechanistic model GALES by one of these modelling ap-
proaches if they were previously “trained” using outputs from the
GALES model run over a large range of example stands. This could
provide a very rapid method of calculating trees at risk over large areas
such as the 790,000 ha of the Landes de Gascogne Forest or in computer
simulations of different forest management scenarios such as have been

conducted in Finland by Zeng et al. (2007). This would allow rapid
simulations of alternative management approaches for forest manage-
ment planning and a very quick assessment of the impact of a plan on
the current and future wind damage risk to the forest.

All the models in conjunction with regional predictions of wind
speed during storms Martin and Klaus were successful at predicting
individual tree damage within both the very well defined and measured
Nezer Forest as well as across the whole of Landes de Gascogne Forest.
However, overall there was little improvement in the accuracy or dis-
criminatory ability of the artificial neural network model used in this
study over the logistic regression model and results were similar to
those obtained in the previous study both for the Nezer Forest and with
the NFI data. This is in contrast to Hanewinkel et al. (2004) who found
enhanced identification of damaged trees with the artificial neural
network model compared to the logistic regression model. However, we
did find that the random forests model produced enhanced accuracy
and AUC values over all the other models for all circumstances (both
forest test areas and for all heights of CWS calculation) and showed
good discriminatory power (AUC between 0.827 and 0.837).

The random forests models were also found to be extremely in-
sensitive to removing any individual variable but performance was
adversely affected when all stand variables (Gap Size, Stand Mean DBH,
Stand Mean Height, Stand Density, Stand Mean CI_BAL) were removed. In
contrast both the logistic regression and artificial neural network
models were more sensitive to the removal of individual variables and
the logistic regression model particularly sensitive to the removal of the
information on whether the stand was in the Dune or Landes area, the
soil type and its hydrological status (Dune, Soil and Hydro variables).
This was confirmed by the removal of groups of variables covering tree,
stand and site conditions where the logistic regression and artificial
neural network models were very sensitive to the removal of all site
variables (WAsP 40m, Dune, Hydro, Soil), and performed best when site
and stand information were available. These observations support the
previous findings of Kamimura et al. (2016) where the logistic regres-
sion model lost discriminatory power if there was no information on
whether the plot was in the Dune or Landes area, what the soil type
was, and the hydrological status of the soil.

Interestingly the removal of either individual tree variables or all
tree variables (Tree DBH, Tree Height, Tree CI_BAL) did not have a ne-
gative influence on any model performance and in fact there was a
slight but significant improvement for the random forests models. This
may be a reflection of the data distribution for tree variables that make
it harder for the random forests method to find good unique values on
which to split the data and build a good model. However, the fact that
all models were not affected by the lack of tree data might suggest that
for severe storms in forests similar to the Landes de Gascogne Forest the
damage is controlled by stand and site characteristics and individual
tree characteristics do not modify the effective vulnerability to the
wind. This would fit with the accepted view of the nature of damage
within these forests, which is that it is triggered at vulnerable edges
resulting from a recent clear-felling and then propagates through the
stand damaging almost all trees regardless of their individual char-
acteristics (Dupont et al., 2015; Kamimura et al., 2016).

All models were successful in replicating the outputs of the GALES
model using the training data set with r2 values, in almost all cases,
greater than 0.9 between predicted critical wind speeds and the GALES
derived critical wind speeds. This extremely strong correlation meant
that substitution of model derived critical wind speeds for the GALES
values in the damage model predictions of damage/no damage had
almost no impact. However, the use of the critical wind speeds calcu-
lated by GALES or the CWS models as inputs for the damage models
leads to concerns about error propagation. Therefore, because the
performance of all the damage models was unaffected by the removal of
critical wind speeds as inputs, it might be advisable to use damage
models developed using only measured data. In addition, all the CWS
models had a large standard deviation in their predictions indicating
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that the model derived critical wind speeds would only be appropriate
for large areas and multiple simulations, such as investigating man-
agement options over a whole forest, rather than in calculations for
individual trees or stands. Another use would be to provide a starting
(seed) wind speed in the iterative calculations used in the GALES model
itself (Hale et al., 2015).

The models developed with the large extensive data set across the
whole of Landes de Gascogne Forest (NFI data) following damage
caused by Storm Klaus in 2009 were successful in predicting the da-
maged trees in the smaller Nezer Forest for a completely different storm
(Storm Martin in 1999). However, the models developed with the Nezer
data showed no predictive ability for the storm damage in the larger
NFI data set. This agrees with the findings of Kamimura et al. (2016), as
discussed earlier, who were unable to successfully apply their logistic
model developed with the Nezer data to predict damage in the whole
Landes de Gascogne Forest and it is no surprise that models developed
within a limited data set do not work in larger more complex areas.

Altogether, the results suggest that the random forests modelling
approach can very successfully predict the trees that will be damaged
during a storm with an accuracy of up to 76% so long as good quality
data are available to “train” the model. This data can be from any storm
so long as there is a sufficient range of input conditions, because the
models were found to be transferable to other storms under such con-
ditions. The random forests model could also be used in large-scale
scenario testing to investigate different management options into the
future. Such an approach would provide a powerful planning and
public engagement tool because the models are fast and the impact of
decisions could be visualised almost immediately.

5. Conclusions

The results from this investigation of new approaches to modelling
forest wind damage suggest that artificial neural networks are no better
than logistic regression models in their accuracy or discriminatory
ability in determining which trees are likely to be damaged. However,
no model tuning was employed with either approach so performance
might be improved with adjustment of parameters such as the damage
cut point. Even so, the models based on the random forests approach
were found to be much more accurate and had higher discriminatory
power than the logistic regression and neural network models in all
circumstances and to give high accuracy (> 75%) and good dis-
crimination (AUC > 0.8). In addition they were almost completely
insensitive to the removal of any specific input variable and dependent
on only stand level information to achieve good results. This would
mean that they could be used successfully even if specific data were
missing. Tree level information was found to be unimportant in all
models suggesting that the dominant damage mechanism in these for-
ests is propagation of damage from vulnerable forest edges, which af-
fects all trees regardless of their size.

The random forests model along with the other approaches was also
successfully able to predict the critical wind speeds (CWSs) predicted by
the GALES model if trained on an extensive enough artificial data set.
The models are much faster than GALES due to a lack of a requirement
for iteration and so could be used for running large scale “what if”
scenarios as part of scenario modelling and testing or planning exercises
involving stakeholders.

The models that were developed all require extensive data sets of
actual damage (large range of input variable values) for their devel-
opment and could be transferred to other regions if the forest conditions
in the new area are comprehensively covered within the model training
data set. However, if the conditions are different and no detailed da-
mage data from storms in the new area are available the models are
unlikely to be transferable. In contrast, all the models can be trained to
replace GALES if a large artificial data set covering the range of stand
characteristics to be found in the new region is first used to “train” them
and this could be extremely useful for large scale forest planning in any

region that has its specific conditions and species incorporated in the
GALES model.
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