

IUFRO

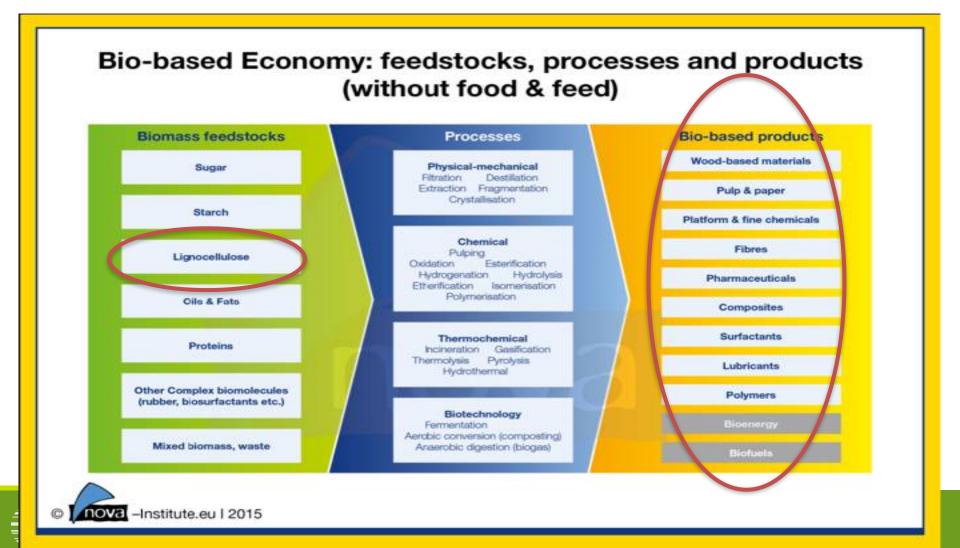
Jean-François Dhôte, Catherine Bastien, Jean-Michel Carnus, Catherine Collet, Barry Gardiner, Myriam Legay, Laurent Saint-André

International Scientific Seminar, Biarritz, June 13th 2016 « Sustainable intensification of planted forests : how far can we go ? »

Objectives of the talk

Background (trends & perspectives) :

- ♦ world population & développement \rightarrow demand of wood-products
- forests : provide an increasing range of product/services, under stronger constraints, pressure by other land-uses (re-emerging)
- bring an integrated response to climate change : adaptation, mitigation, regulation of ecosystem services, planning
- need to redesign production/management systems
- ♦ imitation of nature (Lorentz & Parade, 1837) → « close-to-nature forestry »


3 focus about nature/silviculture/intensification/ecology :

- ⇒ adaptive potential of close-to-nature forestry
- → options for diversification & planning
- ecological intensification as more efficient use of cycles

Bioeconomy : consider wood in the *big picture,* supply new usages/production chains

Many resources are forcasted to run out within a relatively short period, ...

Lanthanides *

Ce

Pr

Nd

Pm

5m

Eu

н	Remaining years until depletion						5-50 y	eine -									не
1.00754	of known reserves					0-100	years				8		t		9	10	
ч	Be			xtrac			100-500 years						C	N	0	F	No
Na	Mg	rate	ore	xuac	uonj							AI	14 51 20.0000	*		CI NLAGIT	** Ar 35548
19			10			1	38.	139		10	1.3				.84	38.	10
K	Ca	\$c	Ti	•	Cr	Ma	Fe	Co	NI	Cu	2n	Ga	Ge	A6	5.	Br. 75.004	Kr
Ø			-	4	41	40									44		94
Rb Lain	Sr.	Y	21	ND	Mg	TC	Ra	-	Pd	Ag	Cd		50	50	Te	4	Xe
15	16	10		71		15							-		-	16	-
Cs	Ba'	La*	H	Ta		Re	08		Pt	Au	Hg	The	Pb		Po	At	Rn
U7	08	59	104	105	18		108	100	1102	111	112.	113	118	. 120.	110	111	116
Fe	Ra	Acl	RI	Db	Sg	Bh	Hs	Mt	Ds	Rq	Uub	Uut	Uuq	Uup	Ly	Uus	Uue

47

Ho

6

Dy

Gd Tb

http://reports.weforum.org/toward-the-circular-economyaccelerating-the-scale-up-across-global-supply-chains/mountingpressure-on-resources/

... while only few materials are recycled at scale

Actinides I	Th Pa Juines Jeans	U	HP STA	Pu pu gan	M. Am (345)	the cost	er Bk (sin)	10 00 00 00 00 00 00 00 00 00 00 00 00 0	HIT		- C.C.	irrent r recycli			1 10 25	<1% -10% 0-25% 5-50% >50% ta avait					15 15 13 20:00113	e. C Constr U. Si Si Jaunis	7 N 16 00074 15 P 36 61705	1 0 1 10 10 10 10 5 20.06	F VE MAND C1	2 He +000000 Ne 20.1707 10 Ar 20.540
									ND K	Ca 40079	27 Sc 44.1000	Ti 41.507	an a	Cr	25 Mn 34 2009	Fe	Co MAYEER	28 NJ Matter	27 Cu 61.546	30 Zn (0.39	Ga exttp	Ge	As As	50 110	30 Br 75.564	× Kr 11.00
									Rb them	Sr.	. X	27 91,534	Nb sciences	Mo 55H	61 Te (H) 75	Ru	Rh Rh HE KOM	en Pd IN 42	47 Ag 107.9682	Cd tight	er In Factor	Sn 191700	Sb UT RE	Te tre	0 1 053044	54 Xe 10129 16
From line								_	CS TO NOLE	Ba crasor Ra colum	La* concern Ac1 d20	194		W Sg (NR)	Re MC207 Bh UND	OS 1923 HS (201)	lr stratt the Mt com	Pt micros the Ds gray	101	Hg xuss H2 Uub (200)	Ti Plia Mits FG Uut OMi	Pb 2m2 1u Uuq cm	Di An teta Uup cim	Po (25%) 115 LV (250)	At 29% 907 Uus	Rn (225) 193 Uuo
dominique.luzeau			ellir ique.or			5/	/11/20)14		L	Lanthan	sides *	Ce Latimity	Pr Pr 100.34	inei	47 Pm 160.36	E Sm ist No.	60 Eu 10755	a successive states	till The television of	Dy HOM	Ho Ho Ho Ho	Er ers	Tm Inn	The state	Lu claser
http://www.mosi pdf/Pleniere_D.L			ites/r	nosir	n201	4.org	s/file؛	š/		A	Actinide	61	Th 212 010+ 2	Pa 216 0000	U 218-039	Np (13/)	Pu (IM)	Am dei	Cm ovn	Bk	Cf (25%)	Es (353)	Fm (312)	Md criss	No (2010	Lr (10)

Source: Professor James Clark, Green Chemistry, The University of York

« Grey » renewables energies (wind, PV) consume lots of rare elements : unsustainable !

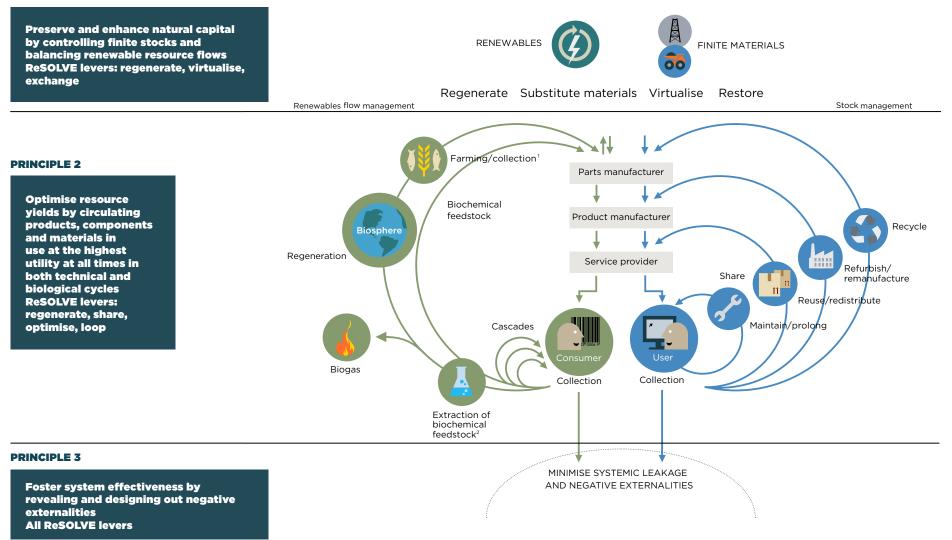
« la **dépendance des éoliennes au néodyme et au dysprosium**, deux métaux de la famille des terres rares qui constituent les aimants permanents actuellement nécessaires pour l'alternateur, illustrent bien cette question sensible des ressources minérales :

un déficit en dysprosium est prévisible à partir de 2020 compte tenu de l'augmentation de la demande actuelle.

Autre exemple avec des technologies **photovoltaïques** très prometteuses comme le CIGS (cuivre, indium, gallium, sélénium) qui sont confrontées aux mêmes enjeux :

on estime à 20 ans seulement le ratio « réserves sur production de l'indium »

Isabelle Blanc, 21 oct 2015, ParisTech Review. Comment calculer l'**impact environnemental des énergies renouvelables ?**


 $http://www.paristechreview.com/2015/10/21/impact-environnemental-renouvelables/?utm_campaign=NL\%2052\%20-\%20112015\%20-\%20Global\%20EN \& utm_medium=email_eCircle&utm_source=Global\%20FR$

Circular economy - an industrial system that is restorative and regenerative by design

PRINCIPLE 1

1 Hunting and fishing

2 Can take both post-harvest and post-consumer waste as an input

SOURCE: Ellen MacArthur Foundation, SUN and McKinsey Center for Business and Environment, *Growth Within: A Circular Economy Vision for a Competitive Europe* (2015). Drawing from Braungart & McDonough, Cradle to Cradle (C2C).

« Close-to-nature » forestry : is it efficient as an adaptive strategy ? what does it mean (ref Anthropocene) ?

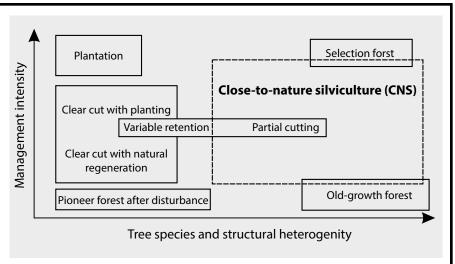
Extreme events such as storms, droughts, flooding, and heat waves are probably the **most important threats** in Temperate Oceanic regions [...]

natural mechanisms of **inherent adaptive capacity** are diverse and **will support adaptation** of forests to climate change. However, **natural processes alone are too slow to cope with** the projected rates of environmental change [...]

from European biogeography it can be inferred that **adaptive capacity is smallest at the rear edge** of the forest biome, where only short-term adaptation and plasticity are able to counteract the threat of extirpation of forest species under less suitable climate conditions. There are **considerable differences in socio-economic adaptive capacity** within Europe and **it is worrying that this is smallest in the Mediterranean region where the largest potential impacts are expected**

Lindner, M., M. Maroschek, S. Netherer, A. Kremer, A. Barbati, J. Garcia-Gonzalo, R. Seidl, et al., 2010. « Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems ». Forest Ecology and Management 259(4): 698–709

Review


Journal of Environmental Management 146 (2014) 69–83

Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management?

Marcus Lindner ^a, Joanne B. Fitzgerald ^{a, *}, Niklaus E. Zimmermann ^b, Christopher Reyer ^{c, d}, Sylvain Delzon ^{e, f}, Ernst van der Maaten ^{g, h}, Mart-Jan Schelhaas ⁱ, Petra Lasch ^c, Jeannette Eggers ^{a, j}, Marieke van der Maaten-Theunissen ^{g, h}, Felicitas Suckow ^c, Achilleas Psomas ^b, Benjamin Poulter ^{b, k}, Marc Hanewinkel ^{b, 1}

Adapting forests to extreme storm events is - outside Great Britain and Ireland with already existing particular storm adapted management strategies - an exception, and requires measures such as limiting tree height that are unpopular and against the dominating "close-to-nature" forestry with long rotation periods in Central Europe

Figure 1

Classification of CNS according to management intensity as well as tree species and structural diversity. Adapted after Puettmann et al. (2009). Utiliser des processus naturels pour guider les écosystèmes avec **le moins possible d'apports** en énergie (coûts) :

- promotion d'espèces naturelles et/ou adaptées à la station (non-natives acceptées en mélange avec des natives)
- forêts mélangées et structurées
- éviter les coupes rases autant que possible
- promotion de la régénération naturelle
- sylviculture d'arbres individuels
- intégration des services écosystémiques (eau, récréation...) à grain fin

Pommerening & Murphy (2004), Johann (2006), Spathelf (1997)

« **the restrictions of CNS** for the use of natural regeneration and 'low impact' interventions and the focus of CNS systems on mid- and late-successional tree species **limit the options for human-induced assistance of adaptation**, e. g. by introducing non-native or specific drought-resistant tree species and provenances »

Is Close-to-Nature Silviculture (CNS) an adequate concept to adapt forests to climate change?

Landbauforsch · Appl Agric Forestry Res · 2015 · online first · 1-10

Peter Spathelf*, Andreas Bolte**, and Ernst van der Maaten***

Suitability of close-to-nature silviculture for adapting temperate European forests to climate change

Peter Brang¹*, Peter Spathelf², J. Bo Larsen³, Jürgen Bauhus⁴, Andrej Bončìna⁵, Christophe Chauvin⁶, Lars Drössler⁷, Carlos García-Güemes⁸, Caroline Heiri¹, Gary Kerr⁹, Manfred J. Lexer¹⁰, Bill Mason¹¹, Frits Mohren¹², Urs Mühlethaler¹³, Susanna Nocentini¹⁴ and Miroslav Svoboda¹⁵

6 strategic principles (to increase adaptive capacities) :

- 1 Increase tree species richness (at the stand scale)
- 2 Increase structural diversity
- 3 Maintain and increase genetic variation within tree species
- 4 Increase resistance of individual trees to biotic and abiotic stress
- 5 Replace high-risk stands
- 6 Keep average growing stocks low

Single-tree selection has limitations :

- very small gaps favour few shade-tolerant species, exacerbated if no tending
- enrichment planting often not used (browsing damage constraint)
- rarely uses non-native species with high adaptive capacity (Douglas fir)
- variant « target diameter harvesting » may decrease genetic variation (trees with higher heterozygosity)

3 types of close-to-nature silviculture (CNS) 1 Single-tree selection, which also includes

- 'continuous forest'
- 2 Group selection
- 3 Shelterwood

The uniform shelterwood system :

- has the lowest structural diversity in the long term
- but is more suitable for increasing tree species richness in the next forest generation, by facilitating the introduction of new species or provenances with enrichment planting

Shortcomings of CNS : 'species richness', 'genetic variation', 'replace high-risk stands'

- employ a larger variation in regeneration methods
- ➡ integrate light-demanding tree species, **non-native species** and **non-local provenances**
- ➡ apply different CNS types at the landscape level
- overcome restrictions aimed at conserving genetic diversity of local populations

J.F. Dhôte, C. Bastien, J.M. Carnus, C. Collet, B. Gardiner, M. Legay, L. Saint-André Intensification in the context of bioeconomy and circular economy EFI-IEFC-IUFRO « Sustainable intensification of planted forests : how far can we go ? », Biarritz

June 13th, 2016

What is close-to-nature silviculture in a changing world?

Kevin L. O'Hara*

The **silviculture of the future** will be **highly varied** and highly **flexible**, [...] recognize the importance of adaptive or 'artificial' treatments such as tree **planting**, planting **non-native species**, **moving species beyond** their native range or **developing even-aged forests**. These are treatments that will **help forestry maintain productive** forest landscapes in a period of changing climate, conversion of forest land to other uses and expanding problems with invasive plants, insects and pathogens.

If the purpose of a close-to-nature forestry is to **persuade a doubtful public** that our intentions are good and our actions are sound, then **why risk alienation by using terms that are misleading** ? Why promote a suite of treatments that are artificially limited by **a selective interpretation of ecology** and truly unnatural ? [...]

Whereas our understanding of natural processes and stand dynamics has advanced, **rebranding forestry** with new labels that use the words 'nature', or 'balance', or 'holistic' **is really just advertising** or a form of 'buzzword creep' (e.g. Park 2011). **If existing scientific information is ignored** to pursue management strategies based on **tradition**, **beliefs or old science**, the label of close-to-nature is simply **misadvertising**

Forestry 2013; **8**, 401–410, doi:10.1093/forestry/cpt012 Advance Access publication 21 May 2013

Silviculture in an uncertain world: utilizing multi-aged management systems to integrate disturbance[†]

Kevin L. O'Hara* and Benjamin S. Ramage

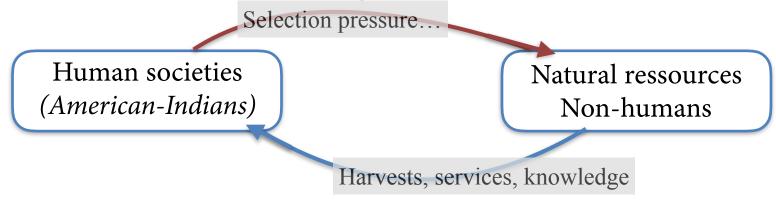
University of California, 137 Mulford Hall, Berkeley, CA 94720-3114, USA

Anthropocene : the distinction natural/artificial becomes less & less straightforward

« La caractéristique principale du naturalisme est son dualisme : s'il a permis, en objectivant la nature, d'en développer la connaissance scientifique, il est aussi ce qui permet d'opposer l'homme et la nature, alors même que **la distinction entre le naturel et l'artificiel, entre histoire humaine et histoire naturelle, est de plus en plus difficile à faire** »

Catherine Larrère, 2015. Pour une nouvelle approche de l'idée de « nature ». In « Guide des humanités environnementales » (éd. Aurélie Choné, Isabelle Hajek et Philippe Hamman), Presses universitaires du Septentrion

« Nous ne saurions penser et changer la société par les seules sciences. [...] En revanche, elles ne peuvent plus être tenues à l'écart de nos décisions politiques. [...] En ce seul sens, la nature entre résolument en politique.


Et les sciences de la nature constituent dès lors les organes sensoriels de la politique »

Dominique Bourg, 2 janv. 2016. Les sciences naturelles sont-elles révolutionnaires ? http://sciences-critiques.fr/les-sciences-naturelles-sont-elles-revolutionnaires/

Descola, P., 2014. Les choix du monde de demain. Presented at the meeting « L'homme peut-il s'adapter à lui-même? Options futures et marges d'acceptation », Collège de France, Paris, 23 mai 2014 Philippe Descola : adaptation, co-evolution & Anthropocene

les humains participent évidemment de façon active à la production même des facteurs environnementaux qui affectent leur existence et, dans la très grande majorité des cas, sans en être conscients et dans la très longue durée

Avec l'**Anthropocène**, [...] ce qui s'était opéré de façon non intentionnelle, dans l'essentiel des cas, et sur une échelle de temps pluri-millénaire, nous apparaît soudain [...] comme **réclamant une action volontariste à mener dans des délais très courts**

notre destinée **ne se résume pas à un face-à-face**, plus ou moins hostile ou plus ou moins bienveillant, **entre l'homme et la nature**, ainsi que la tradition naturaliste nous avait portés à le croire, mais que cette destinée est entièrement dépendante des **milliards d'interactions et de rétroactions** par lesquelles **nous engendrons**, au quotidien, **les conditions environnementales nous permettant d'habiter** la Terre

Adaptation & mitigation : paths for diversification under uncertainty, looking for performance and flexibility

Plant reproduction material produced in seed-orchards may bring a better mixing of initial genetic diversity

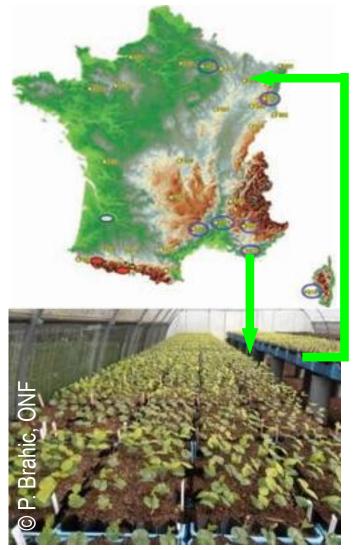
Diversité allélique

Mode de régénération	Nb allèles SPAC 7.14	Nb allèles SPAC 12.5	déficit en hétérozygotes
Régénération naturelle (après tempête)	19 + 5	12 + 3	0,282
Verger à graines	27	18	0,074

PSY-VG-003- Haguenau 4,3 ha 191 « arbres + » sélectionnés dans les parcelles autochtones Haguenau 5 à 17 copies par géniteur Répartition aléatoire

Diversité plus élevée en verger à graines

Réduction de l'apparentement dans le matériel collecté en verger à graines


Pas d'organisation spatiale de la diversité en plantation

Source : Catherine Bastien

J.F. Dhôte, C. Bastien, J.M. Carnus, C. Collet, B. Gardiner, M. Legay, L. Saint-André Intensification in the context of bioeconomy and circular economy EFI-IEFC-IUFRO « Sustainable intensification of planted forests : how far can we go ? », Biarritz

June 13th. 2016

Change genetic resources : moving populations polewards

 Vulnerability of populations at southernmost margin of distribution areas

- monitoring/identification of vulnerabilities
- safegarding in nurseries
- planting on +northern locations

Applications :

- conservation of genetic resources
- strengthen local adaptation of autochthonous species

Source : Brigitte Musch, Hervé Le Bouler, Olivier Forestier, Patrice Brahic, Myriam Legay (ONF)

Projet GIONO

Change genetic resources : introducing thermophilous species

Performance of Eucalypts under strong drought constraint

(arboretum d'élimination de Caneiret, Estérel)